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Abstract—The demand for mobile video is increasing every
year. To address the strain on long term evolution (LTE) networks
3GPP introduced multimedia broadcast multicast operation
(MBMS). As of LTE release 12, support for MBMS operation
on-demand (MooD) was also added (MooD enables dynamic
resource configuration of multicast flows). While multicast algo-
rithms assuage the demands on the network, quality-of-service
performance metrics no longer are considered an accurate mea-
sure of a user’s satisfaction with the network; recent multimedia
studies show that quality-of-experience (QoE) is more accurate.
In order to maximize the QoE of all users in a LTE MooD system,
we propose two resource allocation algorithms, both of which effi-
ciently allocate resource blocks (RBs) based on both the demand
for each live video stream and the channel conditions of the
users within each group. We also compare our resource allocation
algorithms against four other commonly used resource allocation
algorithms. Both of our algorithms achieve a higher QoE and
video quality, when compared to other commonly used resource
allocation algorithms. Furthermore, our algorithms demonstrate
efficient resource allocation regardless of whether or not the RBs
are sufficient.

Index Terms—On-Demand eMBMS, QoE, MooD, LTE.

I. INTRODUCTION AND RELATED WORKS

THE DEMAND for Mobile video is increasing every year.
Based on Cisco estimates [1], IP video traffic will be

around 80% of all IP traffic by 2019, up from 67% in 2014.
Thus efficient means of distributing video will be of key
importance in terms of addressing this traffic increase.

As of Release 12, 3GPP (3rd Generation Partnership
Project) decided to add LTE MBMS (Multimedia Broadcast/
Multicast Service) Operation On-Demand (MooD) [2] with
support for Over-the-Top (OTT) multimedia service. MooD
enables on-the-fly MBMS service configuration and seam-
less service migration. For example, when it becomes more
efficient to run a unicast service as a MBMS service, the sys-
tem may activate a previously inactive MBMS session for
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Fig. 1. LTE time-frequency radio resource.

the service. As such, future LTE MBMS services may be
dynamically configured on the fly based on each user’s/group’s
requirements and/or the system’s preferences.

MooD also supports dynamic MBMS configuration. To
make effective use of active dynamic MBMS configuration,
we examine LTE resource allocation at the Resource Block
(RB) level. As shown in figure 1, RBs have a duration of
0.5 milliseconds / 1 slot with 12 subcarriers per carrier (a car-
rier has a width of 180kHz [3].) RBs are the basic resource
allocation unit used for both unicast and multicast services.
Due to the time varying wireless channel conditions experi-
enced by end-users, several works analyze the varying channel
conditions problem in terms of both multicast and broad-
cast services [4]. As such, we assume all resource allocation
schemes exploit the fact that channel conditions can vary
across RBs. In this paper we investigate multiple algorithms of
RB allocation based on each users’ demand and their respec-
tive per RB channel conditions. Also, in this paper the terms
channels and RBs are used inter-changeably.

Prior to MooD, MBMS research such as [5]–[9] made use of
Adaptive Modulation Coding (AMC) to adjust the bandwidth
of the communication channel given the RB allocation (AMC
depends on UE feedback of channel conditions via Channel
Quality Indication (CQI) reports [3]). References [5] and [6]
present several AMC strategies for multicast service defined
performance metrics such as average user throughput and bit
error rate in different SNR scenarios. In [7], the MBMS net-
work was divided into concentric regions. A SVC video’s
layers are subsequently assigned different Modulation Coding
Scheme (MCS) (less reliable, but faster, MCS are used by
enhancement layers). Thus a user’s location, relative to the
base station, determined their SNR and which layers they
could receive. This method provides a higher spectral effi-
ciency than using the slowest MCS / MCS of the recipient
with the worst SNR for all layers. Reference [8] obtains the
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optimal MCS for multicast flows, in addition to the number of
subframes to reserve for multicast, to guarantee a target bitrate
for all users demanding multicast service via an exhaustive
search.

To make more effective use of the instantaneously avail-
able bandwidth for a video service many works, including
this one, make use of Scalable Video Coding (SVC) [10]
encoded videos. An SVC video can be encoded into multiple
layers based on fidelity, spatial, or temporal scalability. In this
work we focus on fidelity differentiated SVC encoded video.
With fidelity differentiated SVC video, a video is divided
into N layers. The N layers consist of a base layer (BL) and
N − 1 enhancement layers (EL). Each enhancement layer is
dependent on the layer(s) below it. As such, should the band-
width become insufficient to transmit all layers, a subset of
the layers may be transmitted, i.e., a lower quality video can
be transmitted and recovered. The work we base this work
on [11], used single layer SVC encoded videos; as such, mul-
tiple video layers with potentially different sizes were never
addressed.

In terms of resource allocation for SVC videos, multiple
next generation related works exist. In terms of 4G sys-
tems, [9] uses a Dynamic-Programming (DP) algorithm to
perform resource allocation. Per the DP algorithm result, as
different channel conditions may exist, the MCS for each video
layer is set. In [12], a WiMax system (WiMax uses TDMA
for multiple access) with a single base station transmits mul-
tiple SVC video streams. Each video stream potentially has
multiple video layers. The system attempts to maximize the
system utility based on each user’s channel conditions, pop-
ularity of the video program, and total available resources.
Reference [13] extends this problem by addressing the issue
of resource efficiency and user satisfaction in a multiple-cell
system. A Hybrid Base Station scheme is proposed which
dynamically determines whether a given SVC video’s layers
should be transmitted via multiple base stations or a sin-
gle base station. For all 3 of the aforementioned works, the
systems assume any given user’s channel conditions are homo-
geneous, i.e., the system assumes there is no frequency fading
across resources. As a consequence, prior methods do not work
for MooD over FDD-based systems. MooD potentially sup-
ports LTE slot level RB assignment/updating the RB allocation
every slot, as such the MAC-layer requires RB allocation sup-
port. Prior works only address application layer / video frame
bitrates. If we only used application layer resource allocation,
we would not be able to fully realize MooD’s potential, i.e.,
resources would potentially go to waste. Furthermore, all of
these systems require that the video streams be pre-encoded
to derive a bitrate for each layer, i.e., none of the schemes are
designed to support live video transmissions, where the video
bitrate is variable. As such none of these schemes are suitable
for our real-time live video streaming scenarios, which uses
MAC-layer resource allocation. Our work supports multiple
users with different channel conditions, does not require that
we first encode the video prior to configuration, and assigns
RBs for live video traffic in real-time. Furthermore, like the
aforementioned 3 prior works, we also present a polynomial
time algorithm to solve our optimization problem.

In terms of grouping / improving the spectral efficiency,
works such as [14] attempt to optimize group formation and
multimedia resource request via batching (batching attempts
to reduce the amount of redundant data transmitted for flows
of identical requests by delaying serving a set of requests
until the batching period, as determined by the batching
size and time, has elapsed.) In terms of reducing the over-
all bandwidth requirement, works such as [15], attempt to
reduce the bandwidth requirement and buffer delay for video
on demand (VOD) via periodic broadcasting of popular
video segments. In terms of group formation, works such
as [16] and [17], determine the optimal group assignment
to improve system performance, i.e., both apply sub-group
based adaptive MCS methods. Users may be re-grouped to
mitigate the intrinsic inefficiencies of Conventional Multicast
Schemes (CMS) related to different channel quality expe-
rienced by users. In [16], the system provides an optimal
allocation of wireless resources with the goal of maximiz-
ing the proportional fair utility for both multicast and unicast
users. Reference [17] performs regrouping plus optimization
for multicast services. The objective is to maximize the sys-
tem throughput while guaranteeing proportional fairness. Our
work does not regroup users, as we are trying to maximize
every user’s QoE and each video stream is considered inde-
pendent. We assume the amount of video data varies from one
video frame to the next, i.e., requires real-time adaptation. We
also assume that the channel conditions are dynamic.

Recent multimedia distribution schemes emphasize end-
users’ Quality of Experience (QoE) metrics over traditional
Quality of Service (QoS) performance metrics, as QoE more
accurately captures a users’ satisfaction with a multimedia ser-
vice. From a service provider’s perspective, QoE metrics also
provide useful insights into determining network topology /
deployment of multimedia-based services.

In terms of algorithmic QoE-based works, methods such
as [18] make use of Dynamic Adaptive Streaming over
Hypertext Transfer Protocol (HTTP) (DASH [19]), the net-
work conditions, utility gain of each segment, optimization in
order of seconds, and a playout buffer in order to maximize
the QoE of multiple users. While methods, such as [20], make
use of a Pseudo Subjective Quality Assessment (PQSA) tool
to perform online QoE estimation. Based on the user expe-
rienced QoE, which is estimated in real-time via a trained
Random Neural Network (RNN), the video rate is dynami-
cally adjusted. While this scheme is designed for multicast
transmission, and runs at the MAC layer, it requires every mul-
ticast node runs the tool. The adaptive streaming scheme [21],
Mobile-aware Adaptive Rate Control (MARC), adjusts the
video transmission rate based on the channel bandwidth, i.e.,
the MCS is adjusted based on the clients channel conditions.
Also, the SVC video quality level is adjusted based on wire-
less channel status (wireless channel status includes packet
loss ratio, round trip time, retransmission timeout) and client
buffer status. All of these aforementioned mechanisms make
use of feedback mechanisms which are not supported by the
LTE standard, such as client-side / receiver buffer status, QoE-
reports, and channel status. In [22], the proposed algorithm
ensures that all video streams transmit their respective base
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layer prior to allocating resources for other video streams
enhancement layers. SVC video layers are selected based on
their rate-quality gradient, the network conditions, and the
sender buffer status, such that the video quality is maximized.
The problem with their scheme is that the utility function is
in terms of video quality, i.e., a rate vs quality model, an
optimal solution requires training data based-off of a video
stream/ pre-encoded bit stream characteristics, and the trans-
mission buffer status / link quality is only checked every N
seconds. None of the aforementioned methods are designed to
instantaneously respond to changes in the channel conditions,
i.e., the resource allocation is not updated at the granularity
of a MAC allocation unit.

In terms of Data-driven QoE [23] related research,
Dobrian et al. [24] utilized data-mining to analyze the rela-
tionship between video quality and user engagement. Their
research found that a video’s bitrate and its buffering ratio
dominates a system’s QoE, as captured by their user engage-
ment metric (the user engagement metric measures the average
length of time a user will watch a video before losing inter-
est in the video and changing to a different video.) Based on
Dobrian’s results [24], [25] and [26] derived QoE functions
for both wired and wireless multicast systems, respectively.
It should be noted that [26] is also not designed to instanta-
neously respond to changes in the channel conditions, i.e., the
resource allocation is not updated at the granularity of a MAC
allocation unit.

With the advent of LTE MooD multimedia services, the
MCS of each RB can be adapted based on the CQI reports
from the users in the group associated with said services.
To enhance the QoE of LTE MooD multimedia services
we propose two SVC-aware QoE-based real-time algorithms
for LTE MBMS resource allocation. In our proposed algo-
rithms every slot, minimum MAC Allocation unit / TTI
(Transmission Time Interval) of 0.5ms, the RBs are dynam-
ically allocated to different video flows based on the sys-
tem objective of reducing the buffering ratio and increasing
the average bit-rate, thereby maximizing the aforementioned
QoE / user engagement metric. As our algorithms do not
require use of non-standard supported feedback from the
network and instantaneously respond to changing channel
conditions, we cannot compare our algorithms to the afore-
mentioned QoE-based works. Our algorithms maximize the
system QoE over the set of LTE MooD multimedia services
provided.

In Section II we present the problem formulation. The
proposed resource allocation algorithms are discussed in
Section III, while a detailed description of the resource allo-
cation algorithms is presented in Section IV. Our simulation
setup, scenarios, and results are presented Section in V. We
discuss fairness, efficiency, execution time, and the perfor-
mance of the algorithms in Section VI. Finally, we present
our conclusion and our future work in Section VII.

A. Contributions

With standard MBMS, the number of RBs is fixed for the
duration of each flow. In other words, should the number of

RBs need to be changed, the MBMS flow must be taken-down
and setup again. Yet, with the advent of MooD, the number of
RBs per MBMS flow can be modified at any given allocation
period / TTI, without the need to tear-down the MBMS flow. In
this work we present two new MooD MAC layer SVC-aware
QoE-aware resource allocation algorithms which have the goal
of maximizing the QoE of all users for live video streams; a
side benefit is that the video quality is also maximized. We
also compare our algorithms to several other popular resource
allocation algorithms in terms of fairness/efficiency, computa-
tional complexity, and performance (The performance metrics
we compare are the utility, bitrate, buffer ratio, and the number
of layers delivered.)

We show both of our algorithms outperform both non-SVC
aware, and non-QoE aware, algorithms, i.e., QoS-oriented
algorithms cannot be directly applied to QoE problems. We
also demonstrate that the computational complexity of an effi-
ciency resource allocation algorithm need not be high. To
our knowledge no other research presents a SVC-aware QoE-
aware MAC layer resource allocation mechanism for live video
over MooD.

II. PROBLEM FORMULATION

In this section we first briefly introduce our objective func-
tion, the QoE utility, then we present the OTT live streaming
resource allocation problem. Note: All notations used in this
paper are summarized in table I.

A. Features of QoE Utilities

The most important parameters in the user engagement-
oriented QoE utility function [24] are the buffering ratio
(buffering ratio is the percentage of time spent rebuffering a
video, it does not include the initial/startup buffering time) and
the average bitrate. User engagement is defined as a measure
of the average amount of time a user will watch a TV pro-
gram/video stream before changing the TV program/starting to
watch a different video stream. In terms of the aforementioned
parameters, the higher the buffering ratio is, the less likely the
viewers are to watch the video for an extended period of time.
On the other hand, the higher the average video bitrate is, the
more likely the viewers are to watch the video for a longer
period of time.

The utility function in [25], and shown in equation (1), is
a linear function based on the buffering ratio and the average
bitrate. The exponential form of this utility function, presented
in [26] and based off the same data from [24], is shown in
equation (2). While simpler than its exponential counterpart,
the linear utility function becomes distorted when the buffer-
ing ratio exceeds approximately 10%. The distortion is due to
the limitations of linear-regression, which was used to derive
the utility function. As such, the exponential utility func-
tion more accurately represents the overall user engagement
curve.

Ulinear = −3.7 × BuffRatio + AvgBitrate

20
(1)

Uexp = VideoLength × RBitrate × RBuffRatio (2)
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TABLE I
TABLE OF NOTATIONS

where RBitrate and RBuffRatio are:

RBitrate = 1 − e−0.0001024×AvgBitrate

RBuffRatio = e−0.04606×BuffRatio×100

The physical meaning of equation (1) is that when the
buffering ratio (buffering ratio is indicated by BuffRatio)
increases by 1%, a corresponding decrease of user engage-
ment by 3.7 minutes will be incurred. Also, when the average
bitrate (average bitrate is indicated by AvgBitrate) increases
by 20kbps, the user engagement will increase by 1 minute.

Fig. 2. Example of 3 Multicast Video Groups.

Equation (2) similarly shows that an increase in the buffer-
ing ratio or a decrease in the average bitrate results in an
exponential decrease of the utility / user engagement. The
additional term VideoLength is duration of the video, in sec-
onds. Notice that the buffering term dominates the utility
function in both functions. As demonstrated in [24], the data
analysis for a live video stream (the live video stream used
for the coefficients1 is a 90-minute FIFA World cup soccer
game. The coefficients -3.7 and 20 are fitting coefficients from
Dobrian et al. [24], Figure 12 (a), and data collection bin size,
respectively. Dobrian et al. [24] uses data-mining and curve
fitting to derive these coefficients. The linear equation can also
be seen in [25, p. 366]) shows that the buffering ratio is the
most significant factor in determining a user’s engagement,
while the video bitrate is the second most significant factor in
determining a user’s engagement.

In the next subsection we present the test scenario.

B. Test Scenario

In this work we consider a single cell LTE eMBMS sce-
nario. In this scenario, which is based on [27], the surrounding
cells act as static interference sources with frequency flat
distributions.

In our test scenario there are multiple user equipments (UEs)
in the cell. Each UE subscribes to a single video stream. UEs
which subscribe to the same video are classified as belonging
to the same video / multicast group (In this paper the terms
video and group are used interchangeably). Figure 2 shows an
example of 3 separate multicast groups. Each multicast group
may have multiple channels on which it can receive data. Due
to the nature of multicast, all the members of a group share the
same modulation coding scheme (MCS) on any given channel /
carrier / RB.

There are two critical factors pertinent to resource alloca-
tion. The first factor is each video frame’s packet’s size and its
associated deadline. The second factor is each UE’s channel
conditions with respect to each channel/RB. As all videos are
streamed live, i.e., the eNB distributes the multimedia content
on the fly. In other words, the eNB is unable to obtain informa-
tion, such as a video packet’s size, until the live streaming data
is generated. This is a general feature of live video streaming.
We assume that each UE transmits a CQI report to the eNB
prior to the start of every TTI (The CQI report [3] may be
configured to report the quality of all downlink carriers used

1The coefficients are derived from data mining of user video streams. Thus
each video program / genre may have different coefficients.
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by the UE. For large groups, the probability that a UE will
transmit a CQI report can also be set.)

A limiting factor for transmission of the current video i with
video frame Fnow is the size of its associated video frame
b[i]

Fnow,L , where L is the video layer number. The size of a
video frame’s packet is limited by the trunk size S[i], i.e., the
set of RBs assigned to the video group i. Per equation (3), the
resulting allocation assigns X[i]

j for each channel j and each
group i.

S[i] =
NRB∑

j=1

X[i]
j × M(m[i]

j ) × T (3)

Where the selected modulation coding scheme (MCS) used by
the jth channel, assigned to video [i], is m[i]

j . M(m[i]
j ) represents

a mapping function which maps each MCS to its correspond-
ing per RB bitrate, T represents the allocation period in terms
of number of slots, and NRB represents the total number of
RBs assigned to the set of MBMS video services. Note: each
RB may only be assigned to a single video stream at any given
time.

Per equation (4), the MCS assigned to jth channel is the low-
est MCS among all V [i] of the group members in the group [i].
The channel conditions of the kth user of video i in channel j
is denoted by m[i]

j,k.

m[i]
j = min

k∈V[i]
m[i]

j,k (4)

For convenience, all symbols with superscript [i] indicate that
they correspond to the video group [i].

In order to determine the optimal trunk size for each group,
we formulate the RB resource allocation problem as an opti-
mization problem with the objective of maximizing the system
utility. Prior to each TTI, the eNB runs a resource alloca-
tion algorithm to solve the associated optimization problem
and determine the resource allocation / trunk size for each
multicast group.

In terms of our QoE utility function, we need to determine
the trunk size so we can determine each group’s correspond-
ing average bitrate and buffering ratio. QoE-aware resource
allocation algorithms attempt to maximize their system utility
in order to obtain the optimal user QoE per channel.

In the next section we discuss our proposed MAC-layer
resource allocation algorithms.

III. PROPOSED SCHEME

In order to evaluate video streaming QoE metrics, we must
know whether a video frame is decodable or not. The typ-
ical unit used to evaluate a video streaming QoE metric, a
video frame, exists at the application-layer. In an LTE system,
frames, subframes, and slots are used to transmit data. Due to
the limited capacity of the assigned RBs in a LTE slot, a video
frame may require multiple slots in order to be completely
transmitted. The capacity of a RB is dependent on its MCS
and experienced channel conditions (channel conditions vary
over time.) If the channel coherence duration is less than the
duration of a video frame, the eNB should manage resources /
assign RBs at the MAC-layer in order to make more efficient

use of said RBs. Similarly, in order to perform QoE-based
resource allocation, the QoE must also be evaluated at the
MAC layer. Thus, in order to perform LTE slot resource allo-
cation, we propose a MAC layer QoE utility function. This
function is implemented as an Integer Linear Programming
(ILP) resource allocation algorithm and is also implemented
as a Gradient-based resource allocation algorithm.

In the first subsection we describe the formulation of the
QoE function at the MAC layer. In the next subsection we
discuss how the MAC layer QoE formulation can be struc-
tured as an ILP problem. Finally, in the last subsection, we
discuss how the MAC layer QoE function can interpreted as a
gradient and solved. Algorithms for both the ILP and Gradient
approaches are also presented, in their respective subsections.

A. MAC-Layer QoE Utility Function

Based on the current video frame information and channel
conditions, we predict2 the trend of the QoE and assign RBs
such that the predicted QoE is maximized.

In order to predict the QoE in each round of resource alloca-
tion we take the linear QoE utility, shown in equation (1), from
an application layer QoE function and reformulate it as a MAC
layer QoE function. Furthermore, we expand the definition of
the linear function used in [11] to account for the multiple
video layers associated with SVC. The linear QoE function is
used as it requires less time to calculate than the exponential
QoE function. For performance evaluation purposes, we use
the more accurate exponential QoE utility, which is shown in
equation (2).

We can reformulate the linear application layer QoE func-
tion, equation (1), into its MAC layer equivalent by examining
how each variable contributes to the utility when the units
under consideration are in terms of MAC allocation time
periods versus video frames.

In regards to the buffering ratio BuffRatio (The buffer-
ing ratio is the percent of video frames which are dropped)
and MAC-allocation period (T represents the MAC alloca-
tion period / scheduling interval. The allocation period can be
adjusted by setting T equal to the number of slots. We can
interpret a buffering event as being the result of an insuf-
ficient number of bits being allocated for the successfully
transmission of the current video frame’s base layer. A buffer-
ing event can be interpreted as an insufficient number of bits
being allocated during the L allocation periods which com-
prise the transmission window, i.e., video frame deadline (An
LTE frame is comprised of 10 subframes. Each subframe is
comprised of 2 LTE slots. As each LTE frame is 10 mil-
liseconds in duration, each LTE slot is 0.5 milliseconds in
duration. Therefore, there are 2000 LTE slots per second. As
such, for a given Frames Per Second (FPS), L = 2000

FPS , i.e.,
for FPS = 30, a video frame is approximately 2000

30 = 66 LTE
slots long in duration.) The number of remaining bits required
to successfully transmit the base layer is b[i] = b[i]

Fnow,1
−Bits[i]

(For video [i], b[i]
Fnow,L represents the number of bits associ-

ated with the layer L in the current video frame Fnow, and

2Predict here means we assume the channel will maintain roughly the same
conditions for the duration of the TTI.
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Bits[i] represents the number of bits already transmitted.) In
every MAC-allocation period T the allocated trunk size S[i]

is fixed. As such, we can characterize the probability of a
buffering event occurring in any given allocation period as
P[Buff ] = (1 − 1

u[i] )
+. The probability of a utility gain being

obtained during the current allocation period, due to reducing
the buffering ratio, is:

1

u[i] = S[i]

bF[i]
now,L

= S[i]

bF[i]
now,1

(5)

Note: only the base layer has an effect on u[i] (The base layer
is indicated by L = 1.) As the utility has not yet been real-
ized, the total number of bits b[i]

Fnow,1
is used, as opposed to

the remaining number of bits b[i]. Thus the utility gain is the
probability that the current trunk size S[i], relative to b[i]

Fnow,1
, is

the last required trunk to complete transmission of the current
layer. When S[i] ≥ b[i]

Fnow,1
, P[Buff ] = 0.

As such, the total number of potential buffering events is:

BuffEvents = N[i]
buff +

(
1 − 1

u[i]

)
(6)

where N[i]
buff represents the number of buffering events incurred

by prior video frames, i.e., the number of incomplete trans-
missions.

The resulting buffering ratio is therefore:

BuffRatio = L

tnow + T
× BuffEvents (7)

where tnow represents the duration of time since the epoch of
the live video transmission.

In regards to the average bitrate, the average bitrate is:

AvgBitrate = Bits[i] + S[i]

tnow + T
(8)

where total number of bits already transmitted for video [i] is
Bits[i].

The MAC-layer formulation of the linear QoE function,
from equation (1), is:

U[i] = RE[i] + DR[i] (9)

where RE[i] represents the effect the buffering ratio has on the
utility and DR[i] represents the effect the data rate has on the
utility, both of which are defined below.

RE[i] = wre × L

tnow + T

(
N[i]

buff +
(

1 − 1

u[i]

))

= wre × L

tnow + T

(
N[i]

buff + 1 − T
∑NRB

j=1 X[i]
j M(m[i]

j )

b[i]
Fnow,1

)
(10)

DR[i] = wkb

(tnow + T)

(
kbits[i] + S[i]

1000

)

= wb

tnow + T

⎛

⎝Bits[i] + T
NRB∑

j=1

X[i]
j M(m[i]

j )

⎞

⎠ (11)

Note: For the data rate DR[i], the data rates kbits[i] and Bits[i]

represent the aggregate data rates up to tnow. For the buffering

ratio RE[i], only the base layer has an effect (the base layer is
indicated by L = 1.)

In the above formulation, and per table I, wre represents the
fractional utility loss associated with a buffering event. wkb and
wb represent the fractional utility gain from a bitrate increase
(wkb is defined in terms of kilobits per second (kbps), while
wb is defined in bits per second (bps).)

In the next subsection we discuss the ILP formulation of
the MAC-layer QoE function.

B. Integer Linear Programming Resource Allocation

In equation (12) we derive a system utility U over the set of
video groups. Each group’s contribution to the system utility is
defined with respect to each group’s resource block allocation
X[i]

j and its corresponding weight function g(n) (The weight
function g(n) is a group size weighted function which can be
tuned by the network operator as per [16]; thus the concept
of fairness can be accounted for based on the distribution of
each group’s size.)

U = max
X[i]

j

∑

i

g(n)U[i] (12)

where g(n) is per equation (13), and U[i] is per equation (9).
The weight function g(n) is defined as:

g(n) =

⎧
⎪⎨

⎪⎩

1 (Constant)

log(n) (Logarithmic)

n (Linear)

(13)

The specific weighting function on the right hand side is
indicated in the parenthesis. The specific weighting function
is selected prior to simulation. Fairness, relative to group
size, can be determined by selecting a different weight func-
tion [16]. Note: for the rest of the paper we set g(n) = g(N[i]).

In order to formulate our problem as an Integer Linear
Programming (ILP) problem, we apply the following 3 con-
straints:

V∑

i=1

X[i]
j = 1,∀j (14)

S[i] ≤ b[i]
Fnow,L − Bits[i] (15)

X[i]
j ∈ {0, 1},∀i,∀j (16)

The constraints (14) and (16) limit each channel to a sin-
gle video at a time, where X[i]

j is an indicator variable. The
constraint (15) places an upper-limit on the trunk size allo-
cated to each video. As the over-allocated RB(s) would go
unused, the upper-limit prevents the Service Provider from
over-allocating RBs.

Using the aforementioned constraints and the system utility/
objective, from equation (12), we use ILP plus branch-and-
bound to obtain the allocation pattern X[i]

j in P-time [11]. As a
result our solution is able to operate fast enough to be used for
live video. We call our resource allocation algorithm the ILP
Resource Allocation Algorithm, see Algorithm 1. We provide
a detailed complexity analysis in Section IV.
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Algorithm 1 ILP Resource Allocation Algorithm
Input: T: Allocation-Period, number of slots

1: t: Time
2: m[i]

j : Estimated Channel Condition
3: g(N[i]): Weighted number of users in each video group
4: NRB: Number of Carriers / RBs
5: b[i]

Fnow,L : Packet-Size of current video frame, all layers
6: Bits[i]: Current amount of transmitted bits
7: V: Number of Video Groups
8: L[i]

max : maximum number of layers per video group
9: L[i] : current layer number for video group

10: FPS: Frame Rate
Output: Channel Allocation Pattern, X[i]

j
11: L = 2000/FPS, number of LTE slots per frame
12: sr = 100, need to scale to percentage
13: Tsf = 0.5, scale factor, weights need to be slot relative
14: Aeq =[ ], beq = [1]NRB×1
15: for i = 1 to V do
16: Aeq = [Aeq INRB×NRB] //I is an identity matrix
17: end for
18: for i = 1 to V do //b[i] is an V × 1 vector
19: Lbase = 1,Lk = 0

20: while

(
Lbase+Lk∑

k=1
(b[i]

Fnow,k
) − Bits[i]

)
≤ 0 do

21: Lk = Lk + 1
22: if (Lk + Lbase) > L[i]

max then
23: break
24: end if
25: end while
26: L[i] = Lbase + Lk

27:

b[i] =

⎧
⎪⎨

⎪⎩

L[i]∑
k=1

(
b[i]

Fnow,k

)
− Bits[i] when L[i] ≤ L[i]

max

0 otherwise

28: end for
29: for i = 1 to V do
30: Calculate MCS to Bits Per Slot Mapping M(m[i]

j )

31: A[i]
j = M(m[i]

j ) × T
32:

C[i] =

⎧
⎪⎪⎨

⎪⎪⎩

T

[
−wre×sr×L
(t+T)b[i]

Fnow,1

+ wb×Tsf
t+T

]
when L[i] = 1,

T
[

wb×Tsf
t+T

]
otherwise

33: f [i]
j = g(N[i]) × C[i] × M(m[i]

j )

34: end for
35: //Run ILP + Branch-and-Bound to solve X[i]

j
//ILP maximizes f s.t. constraints (14), (16), and (15).

36: Return X[i]
j

In the first stage of the algorithm we run multiple rounds
over each RB in order to determine the utility associated
with each video. In each round, after obtaining the channel
conditions and the video packet information for a video, we

tentatively allocate the RBs in order to determine each video’s
potential QoE function. After all of the rounds have finished,
in the second stage of the algorithm, the QoE utility function
from each video is used by an Integer Linear Programming
solver to determine how the eNB should allocate RBs such
that the aggregate set of the users’ QoE is maximized. The
proposed algorithm is summarized in Algorithm 1.

Note: When L[i]
max = 1, i.e., the maximum number of layers

is 1 and the algorithm presented here is the same as in [11].
As we calculate the objective function on a per slot basis, the
contribution of any given resource block to the objective func-
tion is dependent on the coefficients C[i] from equation (9),
channel conditions m[i]

j , and the weighted group size g(N[i]).

On line 33, the objective function f [i]
j is shown. The objec-

tive function’s coefficient C[i] can be obtained by disregarding
the terms used to collect buffering events N[i]

buff + 1, the total
number of bits already transmitted Bits[i], in addition to the
bits per resource block m[i]

j , and allocation term X[i]
j . The C[i]

term only needs to account for the incremental change in the
objective function, while the terms N[i] and M(m[i]

j ) represent
the group size and the number of bits for a resource block,
respectively. The number of bits per resource block, given the
allocation period T , is accounted for via the inequality con-
straint A[i]

j . The remaining number of bits to be transmitted
is accounted for via the inequality constraint b[i]. The equal-
ity constraint Aeq permits any video group to be assigned any
RB, while beq requires all RBs be assigned. For readability,
we also add the term sr = 100 as we would like to emphasize
that the buffering ratio is a percentage.

In Algorithm 1, line 35, each video frame’s layer’s size is
strictly enforced (a RB will not be assigned to a video if such
an assignment causes the video layer’s size to be exceeded)
until a solution cannot be obtained, at which point the video
layer’s size limit is relaxed. After the video layer’s size limit
is relaxed, the ILP procedure will be re-run. This process con-
tinues until a solution is found for all videos, or all V videos
are completely transmitted.

In the next subsection we define the Gradient-based resource
allocation algorithm, which is based off the ILP algorithm.

C. Gradient-Based Resource Allocation

By observing that the value/capacity of the jth RB is only
dependent on the MCS used by the ith group, in addition to the
fact that each group’s valuation of a RB is independent of each
other group’s valuation for said RB, the QoE resource allo-
cation problem can be formulated as a gradient-based (GR)
resource allocation problem. In the GR resource allocation
problem, the direction of maximum increase in utility is also
the optimal resource allocation, i.e., each RB is allocated to
the group who values it the most. In this sense, the Greedy
choice / locally optimal choice is always made.

Like ILP, in GR each video frame’s layer’s size limit
is also strictly enforced. We use equation (12) and con-
straints (14)-(16) to formulate our problem. Unlike ILP
though, we remove constraint (15) as a constraint. Instead we
use equation (15) to strictly enforce the maximum value of the
incremental increase in the utility function. This is achieved
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by adhering to the per video layer size limit. The insight is that
there is no potential utility gain / value to be gained from any
portion of a RB assignment which exceeds the video’s layer’s
size limit. The maximum value / valuation of the incremental
increase associated with a given RB assignment is:

flimit =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f [i]
j

b[i]−Bits[i]

M
(

m[i]
j

) 0 < (b[i] − Bits[i]) < M
(

m[i]
j

)

f [i]
j

(
b[i] − Bits[i]

) ≥ M
(

m[i]
j

)

0 otherwise

(17)

As such, it is possible that some RBs will be assigned to a
group which cannot fully utilize said RB, i.e., a RB assignment
may occur despite the fact that the bitrate allocation for said
layer would be exceeded. It should be noted that in ILP any
bitrate allocation exceeding the required bitrate is delayed until
all other video groups have their requirements met, i.e., the
assignment can only occur when the bitrate constraints are
relaxed (bitrate constraints are relaxed when all other groups
have finished or are within 1 RB of finishing).

The Gradient-based algorithm can be constructed by using
Algorithm 1 and replacing lines 35 to 36 with Algorithm 2.

In the next section we discuss our proposed and reference
algorithms.

IV. DESCRIPTION OF ALGORITHMS

In this section we compare our proposed resource alloca-
tion algorithms, Integer Linear Program (ILP) and Gradient
(GR), against four well-known resource allocation algorithms.
(The well-known resource allocation algorithms are: Baseline,
Round Robin, Throughput-Oriented, and Water-Filling [28].)
All algorithms transmit the video layers starting from the
base layer up to the highest enhancement layer. All resource
allocation algorithms are summarized below:

• Baseline (BL): This algorithm is a population-based pro-
portional fairness scheduler resource allocation scheme.
Each group i is allocated �NRB × N[i]

∑V
k=1(N

[k])
� RBs. This

allocation is fixed for the entire duration of the simulation.
This algorithm treats all SVC layers within a group with
equal importance and does not use a QoE-based utility
function.

• Round Robin (RR): Every TTI, this algorithm allocates
all RBs to a different group. If there are NRB RBs and
V groups, then on average every group will be allocated
NRB

V RBs during the duration of the simulation. This algo-
rithm treats all SVC layers within a group with equal
importance and does not use a QoE-based utility function.

• Throughput-Oriented (TO): RBs are allocated with the
objective of maximizing the aggregate system throughput.
As such, larger groups with a given MCS are allocated
RBs prior to smaller groups with the same MCS. This
algorithm treats all SVC layers within a group with equal
importance and does not use a QoE-based utility function.

• Water-Filling (WF): This algorithm refers to the RB
allocation used in [28]. In order to make a fair compar-
ison with our algorithms, we set each group’s demand

for their video stream to be equal to
b[i]

Fnow,L
log10(1+N[i])×M(m[i]

j,k)
.

Algorithm 2 Gradient-Based Resource Allocation Algorithm
Input: NRB: Number of Carriers / RBs

1: V: Number of Video Groups
2: f [i]

j : Utility function for each RB j and video group [i]
3: b[i]: Packet-Size of current video frame for current layer
4: Bits[i]: Current amount of Transmitted Bits
5: m[i]

j : Estimated Channel Condition

Output: Channel Allocation Pattern, X[i]
j

6: for j = 1 to NRB do
7: fmax = 0, RBassign = 0
8: for i = 1 to V do
9: m = M(m[i]

j )

10:

flimit =

⎧
⎪⎨

⎪⎩

f [i]
j

b[i]−Bits[i]

m 0 < (b[i] − Bits[i]) < m

f [i]
j (b[i] − Bits[i]) ≥ m

0 otherwise

11: if flimit > fmax then
12: fmax = flimit, RBassign = i
13: end if
14: end for
15: if RBassign 	= 0 then
16: i = RBassign

17: Bits[i] = Bits[i] + M(m[i]
j )

18: for i = 1 to V do

X[i]
j =

{
1 i = RBassign

0 otherwise

19: end for
20: end if
21: end for
22: Return X[i]

j

Each group’s demand determines its relative priority (an
interpretation of this scheme is the lower the demand
is, the higher the priority is.) In other words, a video
with small packet sizes, good channel conditions, or with
a large group size will have a higher priority in terms
of resource allocation. Every TTI, RBs are assigned to
the video groups in the order of their respective prior-
ities. Compared to [28], we modified the algorithm to
account for the data size associated with each different
video group, i.e., number of bits per video layer per video
frame. As this algorithm differentiates between different
video flows at the video layer level, it accounts for differ-
ent SVC layers. This algorithm does not use a QoE-based
utility function.

• Integer Linear Programming (ILP): Every TTI, this
algorithm allocates RBs according to the each group’s
size, channel conditions, video packet sizes, and the QoE
Utility function given in equation (12) per the constraints
shown in equations (14), (16), and (15). See Section III
for more details. The RBs are assigned such that the
QoE utility is maximized. As this algorithm differentiates
between different video flows at the video layer level, it
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accounts for different SVC layers. This algorithm also
makes use of a QoE-based utility function, thus it can
optimize the user engagement metric.

• Gradient-Based (GR): This algorithm is similar to the
ILP algorithm, but less complex. Every TTI, this algo-
rithm allocates RBs according to each group’s size,
channel conditions, video packet sizes, and the QoE
Utility function given in equation (12) per the con-
straints shown in equations (14) and (16), we remove
the constraint shown in equation (15). Instead of using
equation (15) as a constraint, we use it to limit the maxi-
mum value of the utility function, see Section III for more
details. The RB allocation heuristic used assigns each RB
to the group who offers the highest potential utility gain,
per equation (17), i.e., this algorithm efficiently allocates
each RB to the video / group who values it the most. As
this algorithm differentiates between different video flows
at the video layer level, it accounts for different SVC lay-
ers. This algorithm also makes use of a QoE-based utility
function, thus it can optimize the user engagement metric.

In the next section we discuss the limitations of our
proposed algorithms and how we fairly compare them.

A. Limitations of ILP

ILP results in an optimal resource allocation, yet to do this
it requires a piecewise function to represent multiple layers
via a utility function. Due to limitations of Matlab’s Mixed
Integer Linear Programming (MILP) solver, and the 0-1 inte-
ger programming problem, we can only optimize over a single
utility function per TTI. As such, for a fair comparison against
algorithms which are either QoE-aware and/or SVC-aware, we
only consider a single SVC layer during each TTI.

Complexity Analysis is discussed in the next subsection.

B. Computational Complexity Analysis

In this section we discuss the computational complexity of
each resource allocation algorithm.

The computational complexity of the BL algorithm is O(V),
where V represents the number of video groups. The distri-
bution of RBs is dependent only on the population of all the
groups, i.e., the channel conditions are not factored into this
resource allocation algorithm. As the group sizes are con-
sidered constant-size, per scenario, this resource allocation
scheme only needs to be run once during the simulation.

The computational complexity of the RR algorithm is also
O(V). In the RR algorithm the population of each group is
not accounted for, only the number of groups is accounted
for. Each resource allocation period, every TTI, a different
group is allocated all of the RBs.

The computational complexity of the TO algorithm is
O(V ∗ NRB), where NRB represents the number of MBMS
resource blocks. As the MCS of each RB is dependent on
group channel conditions, each group must be examined to
determine the allocation. This complexity is also the minimum
computational complexity possible for any RB-level allocation
algorithm. This algorithm is run once per TTI.

The computational complexity of both the GR and WF
algorithms is O(V ∗ NRB + V ∗ Lmax) ≈ O(V ∗ NRB), where
Lmax = arg max

k∈V
(L[k]

max). To determine RB allocation, the MCS

of each RB of each group must be examined; in addition,
possibly every video layer must also be examined in order
to determine which video layer is currently being transmitted.
These algorithms are run once per TTI.

Integer Linear Programming, even 0-1 Integer Linear
Programming, is a known NP-hard problem. From an exhaus-
tive search standpoint, our ILP problem has a complexity
which is in P-time, upper-bounded by O((NRB)V). Per the-
orem 1, ILP is an NP-hard problem.

Theorem 1: As the ILP problem can be reduced to a
0-1 Multidimensional Multiple-choice Knapsack Problem
(MMKP), it is NP-hard.

Proof: From [29] we know that the any Integer Linear
Programming problem can be reformulated as a Knapsack
problem. For our particular problem, we can reformulate our
ILP problem to a MMKP. The MMKP formulation of the
problem is:

max
NRB∑

j=1

V∑

i=1

f [i]
j X[i]

j (18)

subject to
NRB∑

j=1

M
(

m[i]
j

)
X[i]

j ≤ b[i]
Fnow,L , i = {1, . . . , V} (19)

V∑

i=1

X[i]
j ≤ 1, j = {1, . . . , NRB} (20)

X[i]
j ∈ {0, 1} (21)

As can be seen above, the single group per RB restriction can
be interpreted as the Multiple-choice aspect of the problem,
the set of NRB RBs as the Multidimensional aspect of the
problem, the value of a RB as per the objective function f [i]

j ,

the weight of a RB as per the capacity of said RB M(m[i]
j ),

and the group-specific capacity/layer size as b[i]
Fnow,L , where

L refers to the size of the current layer in the current video
frame.

∵ MMKP is a known NP-hard problem.
∴ ILP is also a known NP-hard problem.
An issue with high computational complexity is the com-

putation time takes longer, i.e., the TTI duration may need to
be longer in order to permit the resource allocation algorithm
time to finish. The problem with this is that increasing the TTI
duration, decreases the accuracy of the CQI reports, i.e., there
is an increased the risk of losing channel coherency. When
a channel loses coherency, the resource allocation becomes
inefficient, i.e., the performance becomes degraded [3].

In the next subsection, we discuss the differences between
QoE approaches used by the ILP and GR algorithms.

C. Differences in QoE Optimization Approaches

Assuming the assignment of a RB does not exceed the
remaining number of bits to be transmitted for group [i] cur-
rent video layer, i.e., b[i], both the GR and ILP algorithms
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are guaranteed to assign each RB to the video group which
has the highest potential utility function gain from said RB.
The difference between the two algorithms, as explained in
Section III, is how the video frame’s layer’s size is enforced
when making a RB allocation decision.

For ILP, as the resource allocation problem is solved via
integer linear programming, each video frame’s layer’s size is
strictly enforced. Initially, ILP will allocate a RB to the group
which has the largest potential incremental contribution to the
objective function, f [i]

j , as long as doing so does not exceed
the current video frame’s layer’s size limit. The problem with
this approach is that layers which have less than 1 RB of bits
remaining to transmit will not be assigned a RB until the size
limit is increased (The size limit is only increased when no
solution is found given the current size limits) or a RB of the
appropriate size is allocated. As such, some layers may fail to
be transmitted completely.

For GR, as each video frame’s layer’s size only determines
the maximum value of the objective function f [i]

j , it is possible
that a partially used RB will be assigned to a group (a partially
used RB indicates the group is less than 1 RB away from
completing transmission of its current video layer.) As such,
there will potentially be fewer partially transmitted layers. This
approach permits the RBs to be assigned when realization of
a video layer’s contribution to the objective function / system
utility is immediately possible.

As we only consider completely transmitted layers as hav-
ing a contribution to the QoE utility function, we can see that
in general ILP may have a lower utility than GR. As such, we
can see that most of the time GR will result in an optimization
which is as good as, if not better than, ILP’s optimization. The
exception is that GR may under-perform ILP when the poten-
tial utility gain from one group is substantially different from
the potential utility gain from another group, i.e., the group’s
MCS, size, or the associated video layer’s size substantially
differs from that of another group.

In the next section we presented our simulation, results, and
related analysis.

V. SIMULATION AND ANALYSIS

In this section we describe our simulator and simulation
settings. Then we analyze our simulation results in terms of
system performance, i.e., system utility.

A. Environment

The physical-level settings of our simulations are based on
the LTE specifications [30] and [31]. The system-level settings
are based on the LTE simulator [32].

As the LTE simulator doesn’t contain an eMBMS sim-
ulation, we built our eMBMS simulator in Matlab. Using
our simulator we compare the performance of our pro-
posed resource allocation algorithms, ILP and GR, against 4
other commonly used resource allocation algorithms (The 4
other resource allocation algorithms are Baseline, Throughput-
Oriented, Round Robin, and Water-Filling.) We summarize the
simulation parameters and system model in table II.

TABLE II
SIMULATION PARAMETERS AND MODELS

TABLE III
TEST VIDEO (FOREMAN, CIF @ 30 FPS) SETTINGS

We set our system bandwidth to 10MHz (per the LTE spec-
ification [31] there are 50 effective channels / RBs when the
system bandwidth is 10MHz.) With the exception of the sim-
ulation scenarios where we vary the number of MBMS RBs,
we assume 40 of the 50 channels are used for MBMS pur-
poses, while the remaining channels are reserved for unicast or
other applications. Other multicast configuration settings, such
as the system population, are similar to those found in [16].

The video used for our simulation, Foreman [33], is in CIF
format (352x288), has a duration of Di = 300 frames, and a
frame rate of 30 FPS. We encoded the video into 4 layers using
JSVM [34]. The QPs and per layer and cumulative average
bitrates are shown in table III.

Our system capacity is similar to Motorola’s / AT&T’s test
scenario [35]. Due to the limitations of ILP, only a single
layer may be transmitted per video per TTI. For a fair com-
parison against ILP we restrict the WF and GR algorithms to
a single layer per TTI. Except for BL, each algorithm is run
every TTI; BL is run only once, before the simulation begins.
Every channel coherence period, i.e., slot, we recalculate the
MCS of RBs and transmit the data based on the recalculated
bandwidth. As such, given the resource allocation is subject
to the present channel conditions, the simulation results show
the maximum achievable utility function.

In the next subsection we present the simulation results and
said analysis.
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Fig. 3. Performance Metrics for Different Scenarios.

B. Simulation Results and Analysis

The performance metrics in our simulation are presented
below. Each metric is the averaged result over the set of sim-
ulations we performed. We simulated 17 different scenarios;
each scenario was simulated 20 times.

• Average Utility: The expected utility / user engagement
per user is evaluated per equation (2), the exponential
form of the QoE utility function. The exponential form
of the QoE utility function is used as it higher accuracy
and helps ensure that the distortion due to the linear QoE
does not adversely effect the results. Note: The utility
may only increase upon the reception of a full video
frame. The maximum utility is 10 (s), i.e., a video’s max-
imum utility / maximum user engagement is defined as:
VideoLength = Di

FPS , where Di is the duration of the video
[i] in terms of frames.

• Average Buffering Ratio: The average amount of time
spent buffering divided over the entire video length.

• Average Bitrate: The average bitrate (kbps) per user.
• Average Number of Layers: The average number of

layers received by the aggregate group. As the number
of layers increases, the aggregate group’s video quality
also increases.

In figures 3a–3d we fix the group size and the number of
groups, yet vary the number of MBMS RBs. As shown in

figures 3a, 3c, and 3d, the aforementioned metrics improve
when the number of available channels/RBs increases; yet
as shown in figure 3b, the effect of increasing the number
of channels has is less clear. Unlike the single layer SVC
work [11], we see that WF and TO have the lowest utility
and the highest buffering ratio. For WF, this is due to the fact
that a given video group’s enhancement layer is prioritized
over another group’s base layer; this can happen when the
demand for the base layer is higher than that of an enhance-
ment layer, i.e., due to channel conditions or relative layer
sizes, the base layer’s priority is lower than that of the enhance-
ment layer’s. For TO, groups which have a higher throughput
will be assigned the relevant RBs over groups which suffer
from lower throughput, i.e., groups with lower channel qual-
ity are more likely to be starved. As the base layer is relatively
small relative to the entire set of video layers, see table III.
RR and BL have a higher utility and lower buffering ratio.
Both GR and ILP outperform all other algorithms, i.e., have
the highest utilities / set of user engagement metrics, yet as
we can see GR performs slightly better than ILP as it does not
delay the assignment of a RB until all other groups are served.
In figure 3d we can see the physical meaning of the QoE func-
tion, GR delivers the highest video quality over the aggregate
set of groups. In general, as the average number of layers
increases, so does the reconstructed video’s quality/PSNR.
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In figures 3e–3h, we fix the number of RBs and the number
of groups, yet we vary each group’s size (in each scenario
each group has identical size.) As we can see in figure 3f,
the algorithms which do not use a QoE-based utility function
all have higher buffering ratios than those which use QoE-
based utility functions. Similar to the single layer SVC metrics
presented in [11], we see that the WF metrics become worse
than the TO metrics as the group size increases, this is due
to the fact that WF considers the demand of each video’s
current layer while TO does not, i.e., all else being equal, per
table III, enhancement layer 1 gets prioritized over other video
streams’ base layer. Generally speaking as the population of
a group increases, the group’s MCS decreases, as determined
per equation (4); thus the degradation in performance is not
unexpected. Both channel quality aware algorithms TO and
WF perform worse than other algorithms; this is due to the
fact that groups with low MCSs will be starved of resources.
Both GR and ILP outperform all other algorithms, i.e., have
the highest utilities / set of user engagement metrics, yet as
we can see GR performs slightly better than ILP. In figure 3h,
we can see the physical meaning of the QoE function; GR
delivers the highest video quality over the aggregate set of
groups.

Finally, in figures 3i–3l, we show that the aforementioned
metrics decrease as the number of groups increase, yet both
ILP and GR outperform other algorithms. Unlike prior cases
though, as the number of groups increase ILP outperforms
GR. The reason for this is clear. ILP will delay assigning RBs
to any group which cannot fully utilize them until all other
groups which can fully utilize them are served. In this way,
in a given TTI, groups with poorer channel quality conditions
will be served prior to groups which require less than 1 RB to
complete their transmission. As the number of groups increase,
the delay of assigning a RB to a group which cannot fully
utilize said RB likewise increases. When compared to ILP,
GR obtains a higher bitrate and average number of layers;
yet, as GR incurs a slight increase in its buffering ratio, it
experiences a slightly lower utility, as shown in figure 3i, i.e.,
for groups with a size greater than 8.

In the next section we discuss how each algorithm com-
pares.

VI. DISCUSSION

While system performance, in terms of maximizing a util-
ity function is important, there are other aspects to algorithmic
design which should also be discussed. A system designer is
also typically interested in knowing how an algorithm per-
forms in terms of fairness, efficiency, and execution time.
In this section we compare each algorithm in terms of its
performance, fairness / efficiency, and execution time.

A. Fairness vs Efficiency

In this section we discuss how each algorithm behaves in
terms of fairness vs efficiency. As these concepts are oppos-
ing, we emphasize which concept each algorithm is defined in
terms of and how it attempts to achieve it.

In terms of fairness, we know the BL algorithm is a
population-based proportional fairness algorithm, i.e., the
amount of RBs assigned to a group is the ratio of its size rel-
ative to the total size of all the groups. The problem with this
algorithm is not allocatively efficient,3 i.e., does not account
for the MCS of each RB, and is it QoE-aware; as such while
the RBs are proportionally assigned, the bandwidth is not.

The RR algorithm allocates all RBs to a single group every
TTI. This algorithm is fair in terms of resource utilization time,
but is not allocatively efficient in terms of RB assignment as
it does not evaluate the RB in terms of capacity. The problem
with this algorithm is that groups which have low MCS will
be starved due to a low bit rate, i.e., they may be unable to
receive a video without experiencing an unduly high rate of
buffering events.

The TO algorithm is a weighted population-based algorithm.
This algorithm is not considered a fair algorithm, but is consid-
ered an allocatively efficient algorithm. Each RB is assigned
to the group which has the largest aggregate bit rate increase
associated with said RB. The problem with this algorithm is
that groups which are either too small or do not have a suffi-
ciently high MCS will experience a low bit rate, i.e., they may
potentially be unable to receive the video without experiencing
an unduly high rate of buffering events.

The WF algorithm is based on [28] and attempts to achieve
Weighted Max-Min fairness.4 This algorithm is not alloca-
tively efficient as smaller demands are fulfilled at the expense
of larger demands. In terms of video transmission, the problem
with Max-Min fairness is that complex video frames/layers
require a higher bitrate to be successfully transmitted. Thus
all else being equal, the demand of said video frame/layer
must necessarily be higher; consequently, a lower priority will
be assigned to said video frame/layer. Similarly, videos asso-
ciated with groups which have a lower MCS will also have a
higher demand to transmit the same amount of data than sim-
ilar videos associated with groups which have a higher MCS,
i.e., the group with the lower MCS will be assigned a lower
priority. Furthermore, this algorithm suffers from the scenario
where an enhancement layer is smaller than a base layer, i.e.,
the demand for the enhancement layer is smaller than the
demand for the base layer, as evidenced in the previous section
and shown in table III. Thus when RBs are insufficient, more
complex frames / groups with lower MCS may experience
buffering events.

We know that the ILP and GR algorithms exhibit allocative
efficiency, thus the RBs assigned to a group are determined by
maximizing the aggregate QoE increase associated with said
RBs, yet are not considered fair. All else being equal, buffering
events will first occur on videos associated to groups which
offer the smallest aggregate QoE increase per RB.

In the next subsection we discuss the execution of each
algorithm.

3In the context of groups, an efficient allocation assigns an item/set of items
to the group which values it the most [36].

4Weighted Max-Min fairness is achieved when it is impossible to increase
the resource allocation to a flow with a larger demand without decreasing the
allocation to a flow with a smaller demand.
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Fig. 4. Execution Time for Different Scenarios.

B. Execution Time Evaluation

As shown in figures 4a–4c, we can see that the two most
significant factors impacting execution time are the number of
RBs, NRB, and the number of video groups, V (NRB is lim-
ited by the bandwidth and MBMS configuration, while V is
only limited by the MooD configuration.) As either the num-
ber of RBs or number of groups increases, we can see that
ILP becomes less likely of being capable of real-time exe-
cution. The growth in ILP’s execution time is substantially
faster than that of other algorithms. While increasing the TTI
duration would permit ILP more time to finish running prior
to allocating RBs, the accuracy of the CQI reports decrease
with time; as such, increasing the TTI duration also increases
the risk of losing channel coherency. When a channel loses
coherency, the resource allocation becomes inefficient, i.e., the
performance becomes degraded [3].

We do not include the BL or RR resource allocation
algorithms in the execution time analysis graphs as the BL
algorithm is only run once, prior to any data transmission,
and the RR algorithm only examines the number of groups /
determines which group should get the entire set RBs for the
current TTI, i.e., neither algorithm examines the individual
state of the RBs. As such, neither mechanism is computa-
tionally intensive and can easily be shown to have a linear
computational complexity.

In the next subsection we evaluate the performance of each
algorithm.

C. Performance Evaluation

Based on our findings from the previous section and
Section IV, we found that the commonly used resource allo-
cation algorithms such as the population-based static BL, the
group-based RR, the channel quality aware TO, and even the
demand aware WF algorithms are all unable to efficiently
allocate resources for a system transmitting SVC video. As
the concept of SVC video and the importance of the base
layer cannot be expressed to these algorithms, this resulting
inefficiency was inevitable.

When we introduced QoE-aware resource allocation algo-
rithms ILP [11] and GR, we found that not only did we
outperform the other mechanisms in terms of user engage-
ment / utility, but also in terms of video quality / number of

layers delivered. This underscores the physical meaning of the
QoE function as not only being about buffering ratio, but also
being about video quality.

Furthermore, we found that in general we could improve the
efficiency of ILP’s resource allocation by relaxing the strict
size limit associated with each video layer, as performed via
the GR algorithm. Based on the findings presented in the previ-
ous section, we found that in most cases GR performs resource
allocation as good as, if not better than, ILP. In the few cases
where the GR resource allocation algorithm underperforms
ILP, the loss is marginal.

Finally, based on a computational complexity analysis in
Section IV, we found that the ILP has a substantially higher
computational complexity than GR, i.e., NP-hard versus lin-
ear computational complexity. As such, it unlikely ILP will
be used for real-time resource allocation. We also found that
GR has similar computational complexity to WF and TO,
i.e., all these algorithms have a linear computation complex-
ity. While we know the BL and RR algorithms are even less
computationally complex than TO and WF, neither of them
consider the channel conditions; as such, neither of them is
a viable candidate for maximizing user engagement or video
quality.

In general, as GR performs equal to or better than ILP in
terms of the aforementioned performance metrics and has a
lower computational complexity than ILP, it is suggested that
GR be used to perform real-time resource allocation.

VII. CONCLUSION

An on-demand resource allocation algorithm is a necessity
due to the high volume of video traffic in LTE networks.
Based on our simulation results we found that a QoE-based
resource allocation algorithm achieves higher user satisfaction
and video quality than traditional non-QoE aware resource
allocation algorithms.

In this paper we proposed two QoE-Based resource allo-
cation algorithms, GR and ILP, which efficiently allocate
resources / RBs based on both the demand of the video and the
channel conditions. Our algorithms are designed to maximize
the QoE utility over the aggregate set of all users.

To test the algorithms we built an LTE eMBMS
simulator whose environment is based on the LTE
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specifications [30] and [31]. The system settings are based
on [32]. The system capacity is set per AT&T’s / Motorola’s
settings [35].

We evaluated the performance of both of our resource allo-
cation algorithms, GR and ILP, against 4 well-known resource
allocation algorithms, TO, WF, BL, and RR. Our resource
allocation algorithms always achieve the highest QoE util-
ity, and the highest video quality, regardless of whether the
resources / RBs are sufficient or not. When the number of
groups is small, we found out that GR actually outperforms
ILP. Only when the number of groups becomes large does
ILP slightly outperform GR. In terms of computational com-
plexity, we found that GR is significantly less computationally
complex than ILP. Therefore, based on the performance and
computational complexity analysis we suggest that the GR
algorithm be used for real-time resource allocation. In our
future work, we plan to investigate how pricing can be used
to better allocate resources / RBs among video groups based
on channel conditions and expected mobility. Groups which
pay more could enjoy a higher video quality while not being
restricted to slower speeds. Thus pricing could be used to dif-
ferentiate service quality among video groups / create a tiered
video service.
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