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Abstract—Inter-Cell Interference Coordination (ICIC) is in-
troduced to mitigate interference at cell-edge User Equipments
(UE). A variety of ICIC approaches were proposed in previous
literature. However, most of them focused only on resource
allocation methods, which were not practical enough for imple-
mentation. In our ICIC design, we propose not only a resource
allocation scheme but also a scheduling method. The proposed
resource optimizer can find an ICIC solution efficiently. The
proposed scheduler can maintain the performance of the solution
in each Transmission Time Interval (TTI). Both of the resource
optimizer and the scheduler are compatible with the testbed.
Simulation results shows our proposed schemes outperformed
other literature findings in edge throughput and edge UE fairness.
Testbed results also shows real gain and the feasibility of our
algorithms.

I. INTRODUCTION

To increase the radio resource efficiency, adjacent Base
Stations (BS) usually use same frequency band in LTE.
However, UE at cell edge may suffer from high interference
from neighbor cells. This interference is called Inter-Cell
Interference (ICI). ICIC is introduced in 3GPP Release 8 [1].
It points out in high-level that radio resource management is
the key to solve ICI problem. Soft Frequency Reuse (SFR) is
a well-known static ICIC solution. In each cell, the bandwidth
divides into two region: cell center and cell edge. The cell-
edge band transmits higher power to increase signal strength
and mitigate the effect of interference. The cell configuration
of SFR is illustrated in Fig. 1.

Fig. 1. Frequency division in SFR.

In recent literature findings, [2] jointly considered load
imbalance of edge UEs and ICIC. Distributed schemes are
proposed to solve ICI problem in [3] and [4]. In [5] [6], the
resource allocation is in time domain. [7] uses game theory in

Hetrogeneous Network (HetNet) scenario. However, mobility
management, distributed schemes, and time-domain ICIC are
not compatible with our testbed. Two others ICIC methods in
centralized frequency-domain scheme [8] [9] are more feasible
on our testbed. Therefore, we take these two methods as
benchmarks and compare several performance metrics with
our proposed algorithm. [10] optimizes specific traffic type in
ICI environment. In simulation, we simplify the problems to
theoretical throughput only.

The remaining of this paper is organized as follows. Section
II describes the problems modeling. Section III presents the
design of our algorithms. Section IV shows the performance
of our algorithms and the comparison with previous ICIC
solutions by simulation. Section V gives the discussion of
results from testbed experiments. Finally, conclusions are
drawn in Section VI.

II. PROBLEM DESCRIPTION

The ICI problem can be described as an integer program-
ming optimization problem. In previous work, the optimization
object is usually the overall throughput, subject to a minimal
cell-edge throughput. However, two drawbacks of such opti-
mization can not be ignored. The first one is that the average
cell-edge throughput is probably still low after optimization.
The second one is that the throughput is likely to have great
difference in each cell-edge UE because of the unbalanced
distribution of cell-edge UE in each cell.

In each TTI, the number of serving UE is limited, and the
maximum value is four in our testbed. If there are more than
four UEs waiting for transmitting, eNB should do scheduling.
Since the object of optimization is focused on single TTI and
the network topologies are probably dissimilar in each TTI,
the default round-robin scheduler is not able to maintain the
performance in each TTI. On the basis of these problems, the
design of our ICIC solution included two aspect: scheduler and
resource optimizer. A classification algorithm and an efficient
optimization algorithm are designed for scheduler and resource
optimizer respectively.

III. PROPOSED ICIC ALGORITHM

We propose a centralized ICIC algorithm, including a classi-
fication algorithm and an efficient optimization algorithm, and
implement these algorithms in the central controller. The flow
of overall algorithm is illustrated in Fig. 2. The input into the



central controller is Reference Signal Received Power (RSRP)
of each UE in each cell. The classification algorithm classifies
UE type, and generates network topology for the input to next
stage algorithm. In the meantime, each UE is grouped to a
type and this information is sent back to corresponding eNB.
The schedule function in eNB schedules serving UEs in each
TTI. After the network topology is generated, the efficient
optimization algorithm produces a command for each eNB.
The command sets the Resource Block (RB) allocation and
UE power configuration. The RB allocation function in eNB
allocates RB for serving UEs according to the command.

Fig. 2. Proposed ICIC solution overview.

A. Classification Algorithm: classifySch

Before scheduling, all UEs in one cell are classified as cell-
center UE, cell-middle UE, or cell-edge UE by their RSRP
value. For a UE, if the difference between RSRP from the
serving eNB i (RSRPi) and RSRP from the neighbor eNB j
(RSRPj) is lower a threshold (Ith), that UE will be classified
as a cell-edge UE. If the UE is not a cell-edge UE, RSRP from
the serving eNB will be compared with the other threshold
(Itt) to classify the UE as a cell-center UE or a cell-middle
UE.

 RSRPi −RSRPj < Ith, cell-edge
RSRPi −RSRPj > Ith, RSRPi < Itt, cell-middle
RSRPi −RSRPj > Ith, RSRPi > Itt, cell-center.

(1)
The main goal of the scheduler is to produce a network

topology and the type of each UE. The network topology
should be able to represent the serving UEs in each TTI,
making commands generated by the central controller take
effect and maintain their performance in each TTI. The UE
type defines the serving UEs in each TTI. The number of
UE type is equal to Nt, the number of maximum serving
UE per cell in single TTI. In each TTI, the serving UEs are
chosen from each UE type. The type of UE includes several
edge types and non-edge type. The edge types include the
information of its neighbor cells. Different edge types include
different neighbor cells. Moreover, the classification algorithm
also increases the number of edge type even when there are
only a few cell-edge UEs. This ensures the scheduler work

in scenarios that the number of cell-edge UE is low. Several
steps are designed to generate UE type. The algorithm executes
independently for each cell.

At first, the scheduler determines representatives of neigh-
bor eNB by the distribution of cell-edge UE. The algorithm can
identify which neighbor cells that cell-edge UEs concentrate
at, and take those cells as groups. There may be one or more
than one neighbor eNB in each group. For clear description,
some vectors are defined as follows and illustrated in Fig. 3.

• eNB vector: The size and the number of eNB vector are
the number of neighbor cell. Each neighbor eNB forms an
eNB vector. In each eNB vector, the index corresponding
to its eNB is 1, and the index corresponding to its adjacent
eNB is a value between 0 and 1, which is predetermined
by the distance between two eNBs.

• Group vector: Group vector is normalization of linear
combination of eNB vectors that in a group.

• UE vector: The size of UE vector is also same as the
number of neighbor cell. UE vector is determined by the
neighbor cell information of UE. If eNB j is one of the
neighbor cell of UE i, the index j of UE vector i is set
to 1. Otherwise, it is set to 0.

Fig. 3. Example of group vector construction.

After constructing group vectors and UE vectors, the algo-
rithm starts to group UE. For each cell-edge UE, the inner
product of UE vector and each group vector is calculated, and
the cell-edge UE will be put to a group with the maximum
result. There is also the maximum size of each group. If the
number of UE in a group is more than the upper limit, that
group will be divided into two groups with equal size. Several
conditions for grouping are included in the algorithm so that
the number of cell-edge group is certainly lower than Nt.

Then, cell-middle UEs and cell-center UEs are going to
be grouped in order. Some new groups will be added until the
number of group reaches Nt. The remaining UEs are assigned
to a group with the smallest size one by one. Overall, the
grouping order of cell-middle UE is prior to cell-center UE.
The reason is that the UE which is assigned to a group earlier
is more likely to be served in the same TTI with cell-edge
UE, and the resource assigned to cell-edge UE is fewer (but
with higher power level to boost its throughput). Therefore,
the cell-middle UE, whose RSRP is lower than that of cell-
center UE, is more possibly assigned with more resource than
cell-center UE.

B. Efficient Optimization Algorithm: bfsOpt

Since the complexity of ICI optimization problem is proved
to be NP-hard [11] [12], the goal of proposed efficient opti-
mization algorithm is to generate a RB allocation command



with better performance at cell-edge UEs for each eNB
efficiently. Due to the testbed characteristics, the proposed
scheme includes two aspects: (1) base station RB mask, (2)
base station downlink data channel power control. A Resource
Block Group (RBG), which consists of few RBs, is the
minimum unit allocated to an UE. The downlink data channel
to UE can be boosted or attenuated by {−6 dB, −4.77 dB,
−3 dB, −1.77 dB, 0 dB, 1 dB, 2 dB, 3 dB} compared with
the reference signal power, which is defined in 3GPP LTE
standard [13].

The overall procedure is (1) to determine RBGs allocated
to cell-edge UE, (2) to determine RBGs allocated to cell-
middle UE, (3) to allocate remaining RBGs to cell-center
UE, and (4) to construct a command for each eNB. The
step (1) in the procedure is implemented by a graph-based
approach. We use a weighted graph to solve the optimization
problem. Our algorithm follows the graph theory [14] and
some heuristic coloring techniques [15] [16]. In the graph
G = (V,E), each node represents a cell-edge UE, and the
weight on each edge represents an interference level when
two cell-edge UEs using the same subchannel. There are two
interference level considered in our work, including (a) edge-
to-edge interference and (b) neighbor-to-edge interference.
The edge-to-edge interference means that two UEs served in
different neighbor cells are connected on the same edge. The
neighbor-to-edge interference means that one UE is not on the
edge of two neighbor cells but the other one is. An example
for constructing weighted graph is illustrated in Fig. 4. The red
thick line means two UEs are in same serving eNB, and must
be allocated with different RBGs. The blue fine line means
two UEs are in adjacency, i.e. edge-to-edge interference, and
should be allocated with different RBGs. The other neighbor-
to-edge interference is not shown in Fig. 4 for clear illustration.

Fig. 4. Example of graph construction.

After the interference graph is constructed, we need to
assign each node to a cluster (i.e. coloring). The goal is
to separate two nodes with high weight edge as much as
possible. In other words, the total interference in all clusters
will be minimized. The number of cluster used in this work
is corresponding to the total RBG number. To reduce the
time complexity of optimization procedure, a greedy algorithm
is adopted in this work. However, it is known that the
performance of greedy algorithm is affected by the order of
node selection. Instead of random selection, we use Breadth-
First Search (BFS) to determine the order of cell-edge UE
on graph. At first, a cell-edge UE is chosen randomly as the

search key. Then, other cell-edge UEs in the same cell and
neighbor cell-edge UEs on the same edge are the next level
nodes to be explored. The search continues until all cell-edge
UEs have been explored once. After BFS, the order for the
greedy algorithm is determined. Fig. 5 illustrates an example
of BFS on graph.

Fig. 5. Example of BFS on graph.

According to the order produced by BFS, the greedy
algorithm takes a cell-edge UE at each time. The cell-
edge UE chooses three clusters with minimal increasing total
interference, subject to a constraint that every UE in the
same cell can not use the same subchannel. After all cell-
edge UEs are allocated with resource, the algorithm starts
to determine RBGs allocated to cell-middle UE. Each cell-
middle UE chooses four clusters with minimal increasing total
interference. This will separate the RBGs used by cell-middle
UEs and their neighboring cell-edge UEs as possible as it can,
and mitigate the interference to those cell-edge UEs. At the
end, the remaining RBGs are allocated to cell-center UEs. A
command is generated for each eNB. An example of resource
allocation is described in Table I. PA means the power level
of data channel to a UE. In RBG allocation, “O” means the
RBG is allocated to the UE, and “X” means the RBG is not
allocated to the UE.

TABLE I
EXAMPLE OF RESOURCE ALLOCATION.

Order UE Index UE Type PA RBG Allocation
1 0 edge 7 OOOXXXXXXXXXXXXXX
2 1 edge 6 XXXOOOXXXXXXXXXXX
3 9 edge 7 XXXXXXOOOXXXXXXXX
4 A edge 6 XXXOOOXXXXXXXXXXX
5 6 edge 7 OOOXXXXXXXXXXXXXX
6 7 edge 6 XXXOOOXXXXXXXXXXX
7 8 edge 5 OOOXXXXXXXXXXXXXX
8 2 middle 3 XXXXXXXXXOOOOXXXX
9 4 middle 3 XXXXXXXXXOOOOXXXX
10 5 middle 3 XXXXXXXXXXXXXOOOO
11 3 center 0 XXXXXXOOOXXXXOOOO
12 B center 0 XXXXXXXXXOOOOOOOO

Legend
PA Transmit power level (0-7)

RBG Allocation O: The RBG is allocated to the UE.
X: The RBG is not allocated to the UE.

IV. SIMULATION RESULT

In this section, we use simulation to evaluate the perfor-
mance of proposed algorithms. All results in this section are
the average of 50 times simulation.



A. Simulation Scenario

The simulation scenario is a 5×5 grid deployment with
uniform UE distribution. In this scenario, the ratio of cell-
edge UE is high (more than 40%), which is able to test ICIC
schemes in dense edge user case. The simulation setup is
described in Table II. The system model follows the testbed
characteristics.

TABLE II
SIMULATION PARAMETERS

Model Parameter Assumption

System Model

Cell deployment 5×5 grid deployment
Cell distance 50 m

Carrier DL frequency 2.66 GHz
Bandwidth 10 MHz; 50 RBs

Resource allocation type Type 0
Max serving UE per cell 4 (single TTI); 32 (total)
Reference signal power −7 dBm

Channel Model Pass loss model 3GPP urban micro [17]
Thermal noise density −174 dBm/Hz

Traffic Model
User distribution Uniform

User density 4-32 users per cell
Data generation Full buffer

B. Compared Schemes

The performance of bfsOpt is compared with six
benchmarks, which are (1) Middle-Power-Enhanced SFR
(MPESFR), (2) SFR, (3) Q-learning ICIC, (4) Hypergraph-
based ICIC (Hgraph), (5) full power scheme, and (6) no ICIC
scheme. In addition, our proposed scheduler (classifySch) is
compared with Round-Robin scheduler (RR). Several combi-
nations of scheduler and resource optimizer are evaluated for
the comparison of these two schedulers.

• SFR is described in Fig. 1.
• MPESFR is similar with SFR, but the power of cell-

middle UE is enhanced.
• Q-learning ICIC [8] learns two parameters (1) cell-center

power, (2) edge-to-center boundary. The eNB band divi-
sion configuration is similiar to SFR pattern referring to
Fig. 1. It is claimed that the higher of total SINR is the
minor ICI.

• Hgraph was proposed in [9]. It considers cumulative inter-
ference to construct a hypergraph, use the hypergraph to
divide neighbor cells into different clusters, and allocate
orthogonal subchannels to cells in the same cluster. It is
claimed that the higher of total CQI is the minor ICI.

• Full power scheme boosts the transmit power of all UEs
to the highest power level that eNB can transmit.

• No ICIC scheme allocates all UEs with the same transmit
power and the same number of RBs.

C. Simulation Result: 4 UEs per cell

The performance of different resource allocation schemes
can be compared by the scenario with only four UEs in each
cell. Fig. 6 and Fig. 7 show the CQI and throughput in the
seven schemes. The edge throughput in bfsOpt is higher than
those in other schemes, since it can maintain the edge CQI
at certain level and allocate more resource to cell-edge UE

Fig. 6. Downlink CQI in 4 UEs per cell.

Fig. 7. Downlink throughput in 4 UEs per cell.

in the dense edge user scenario. Hgraph divides RBs used in
neighbor cells entirely, and therefore it has the highest CQI but
poor throughput. Q-learning ICIC tends to assign cell-center
UE with higher power level and more resource than other
methods, leading to extremely high throughput of center UE.

Fig. 8 shows the fairness of cell-edge UE in the seven
schemes. We make use of Jains fairness index [18] to evaluate

Fig. 8. Downlink edge fairness in 4 UEs per cell.



fairness. The formula of Jains fairness index is given by

J(x1, x2, ..., xn) =

(
n∑

i=1

xi)
2

n ·
n∑

i=1

xi
2

(2)

where J is the fairness index of cell-edge UE throughput
and K is the total number of cell-edge UE. The closer
the throughput, the higher fairness index. Since the resource
division of cell-edge UE is fixed in SFR and Q-learning ICIC,
they might have trouble when the number of UE is unbalanced
in each cell. We solve this problem by increasing the fairness
of cell-edge UE.

D. Simulation Result: 8-32 UEs per cell

Fig. 9. Downlink edge throughput in 8-32 UEs per cell.

Fig. 10. Downlink overall throughput in 8-32 UEs per cell.

The performance of the combination of different schedulers
and different resource allocation schemes can be compared
by the scenario with more than four UEs in each cell. Fig.
9, Fig. 10, and Fig. 11 show the edge throughput, the overall
throughput, and the edge fairness of the eight schemes respec-
tively. After adding classifySch, the edge throughput of bfsOpt
increases, while the overall throughput of that decreases.
The scheme of classifySch with bfsOpt has the highest edge
throughput because it can maintain the edge CQI at certain

Fig. 11. Downlink edge fairness in 8-32 UEs per cell.

level in dense edge UE scenario. The scheme of RR with
MPESFR has the highest overall throughput because the ratio
of cell-middle UEs and cell-edge UEs are high in this scenario.
The scheme of classifySch with bfsOpt has the highest fairness
because each cell-edge UE are allocated with the same number
of RB by bfsOpt and the edge CQI is maintained in each TTI
by classifySch.

V. TESTBED RESULT

Beyond simulation, we conduct several experiments on the
testbed to verify the feasibility of the proposed algorithms. As
shown in Fig. 12, the testbed includes following elements: (1)
LTE small cell, (2) Evolved Packet Core (EPC), (3) Router,
(4) UE, (5) Central Controller. The eNB and UE deployment
is shown in Fig. 13.

Fig. 12. Testbed architecture.

Fig. 13. Testbed scenario.



Fig. 14 describes downlink throughput of cell-middle UEs
and the average of four cell-edge UEs. The downlink data
is full buffer and transmitted by iPerf. As shown in Fig. 14,
bfsOpt outperforms other schemes in the throughput of eNB2
cell-middle UE and the average throughput of cell-edge UEs.
The interference at eNB1 cell-middle UE is relatively low.
Since MPESFR and SFR allocate more resource to cell-middle
UE than that to cell-edge UE, MPESFR and SFR have the
higher throughput than bfsOpt in eNB1 cell-middle UE.

Fig. 14. Downlink throughput of different type UE.

Adaptive Modulation and Coding (AMC) in LTE is a
mechanism in change of Modulation and Coding Scheme
(MCS) to adapt the channel variation. The higher MCS value
means the channel quality is better (i.e. higher CQI). Fig. 15
shows the cumulative percentage of MCS selection of all cell-
edge UEs. According to the figure, Hgraph has the highest
MCS value. The others four ICIC methods also improved the
MCS selection of cell-edge UEs. The MCS curves of no ICIC
and full power are lower than others. Band division and power
control are effective in mitigating ICI.

Fig. 15. CDF curve for MCS of all cell-edge UEs.

VI. CONCLUSION

In this work, we design a classification algorithm as
scheduler and an efficient optimization algorithm as resource
optimizer to realize ICIC on the testbed. For the sake of
implementation, our design is compatible with the testbed.
We use simulation to compare the performance of proposed
algorithms and other schemes in the large scale. Furthermore,
we conduct testbed experiments to verify that the proposed
algorithms have the feasibility to be implemented practically.
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