
NS-2 Tutorial-4

Hung-Yu Wei
National Taiwan University

Speaker: Chih-Yu Wang

Introduction to Wireless and Mobile Networking

2

Creating A New Protocol
• NS-2 tutorial: Section VII

– http://www.isi.edu/nsnam/ns/tutorial/index.h
tml

• Actually, you should go through the whole
tutorial

• We start from a simple protocol: ping

A B

t0 t1

t2

Ping computes (t2-t0)

http://www.isi.edu/nsnam/ns/tutorial/index.html
http://www.isi.edu/nsnam/ns/tutorial/index.html

What we should implement
• The structure of Ping Packet

– Send_time: the time this PING transmit
– RET: how many times this PING delivered

• The Ping protocol
– send (called from script)
– recv (triggered by NS-2)

• The parameters
– Packet size
– Header offset

3

4

Ping.h
Header of Ping Packets

char?

5

Ping.h
• Ping Agent

– C++ definition

TCL command from ns-2

6

Ping.cc
[Class]Ping Packet Header

[Class]Ping Agent

Binding the C++ and OTcl
objects/variables

• Ping.cc

• tcl/lib/ns-default.tcl(or your tcl script)

7

8

Command Methods: sending packet
In Tcl:

$ns at 0.2 "$p0 send”
$ns at 0.4 "$p1 send”
$ns at 0.6 "$p0 send”
$ns at 0.6 "$p1 send”

• Reference:
NS-2 manual
Section 3.4.4

9

Receiving Packets (ping.cc)

•recv in C++ (you should look at the Tcl

codes in the next page)

•It will execute the TCL command like:

•node_(0) recv node_(1) 5.00

10

tcl: Agent/Ping class
• The tutorial put the simulation script and tcl function

in the same file
– Usually, they are different files
– You can put the TCL functions into tcl/lib/ns-lib.tcl

• instproc
– Function in Tcl

In C++ codes:

void recv(Packet*, Handler*){

sprintf(out ,“%s recv %d %3.1f”…)

};

* recv in Tcl (you should look at the C++

codes in the previous page)

11

OTcl Linkage
• Invoking Tcl object

– Tcl& tcl = Tcl::instance();
– tcl.evalc(char *)
– tcl.eval(const char *)
– tcl.evalf(“%d %f…”,int,double,…)

• Passing results
– tcl.result(const char *)
– tcl.resultf(“%d %f…”,int,double,…)

• Error handling
– tcl.error()

12

tcl: simulation
• Simulation Script

set p0 [new Agent/Ping]

$ns attach-agent $n0 $p0

set p1 [new Agent/Ping]

$ns attach-agent $n2 $p1

$ns connect $p0 $p1

$ns at 0.2 "$p0 send“

$ns at 0.4 “$p1 send“

13

Other Modifications
• Makefile

– You should learn how to use make for
Unix/Linux programming

• common/packet.h
– Add new packet type

• tcl/lib/ns-packet.tcl
– Packet header option

• tcl/lib/ns-default.tcl
– Default Tcl values

14

/common/packet.h
New packet type

(TYPE_NAME=id)

For a new packet
type, you should
set an unused id

15

tcl/lib/ns-packet.tcl
To save some memory, you can disable

unneeded packet headers (Not necessary)

16

tcl/lib/ns-default.tcl
• Define all the Tcl default values

In ping.cc

Makefile
• Add your module (ping.o) into OBJ_CC

• You can also edit Makefile.in
– Then enter “configure” to build new Makefile

17

18

Source Codes
• Ping in NS-2

– ns-allinone-2.*\ns-2.*\apps\ping.*

– A complete version ping

• Ping in Tutorial
– A simplified ping version for teaching purpose

• You could learn from both

19

Homework #3
• Deadline: 2 weeks from now

– 5/1 13:00
• Create a new protocol called “pong”

– Create pong.cc, pong.h
– Make other necessary modifications on other files

• You could consider “pong” as a 3-way ping protocol
• “pong” packets should be recorded in trace file

A B

t0 t1

t2

A B

t0 t1

t2 t3

Ping computes (t2-t0)

Pong computes (t3-t0)

20

• Create a “pong” traffic generator
– You could reference the cbr/tcp traffic generator (cbrgen.tcl in HW2)
– Pong transmitter and pong receiver are randomly selected from n

nodes
• Note: transmitter and receiver should be different

– Time intervals between pong event follow exponential distribution

• Use AODV for routing with 10 randomly located nodes in
400m x 600m rectangular area
– Nodes move based on random-waypoint model with zero pause time
– Simulate moving speed of maximum 1m/s, 5m/s and 10m/s

• Use 1, 5, 10 as the maximum speed parameter in setdest tool

– The expected time interval between pong events is 0.5 second
– Compute the success ratio of pong messages

• Delivered Pong/ Total trial
– Compute the average and the standard deviation of “pong” delay time
– Compute the overhead due to AODV routing
– Total simulation time = 21 seconds. Pong starts from 1 second.

• Use DSDV for routing. Compare the network performance.
– You should run simulation for several times (with randomly

generated scenarios)
– You could plot the DSDV and AODV results on the same set of

figures for comparison

21

Clarification on Overhead
• Overhead

– overhead due to AODV routing

– overhead due to DSDV routing

– Routing overhead only counts routing
related control packets (e.g. AODV RREQ,
DSDV route update)
• Do not count headers of data packets

• Do not count ARP packets

22

Submission
• Email to tomkywang+introwmn@gmail.com

– Title: [HW#3] b94xxxxxxxx

– Submit: b94xxxxx_hw3.zip
• Source codes (all files that you created and

modified) and simulation scripts

• readme.txt
– Describe the new files and how you modify the relevant

files

– Instruction on how to run your codes

• b94xxxxx_hw3.doc (pdf or txt)
– Describe your simulation results

– What have your observed? Why?

mailto:tomkywang+introwmn@gmail.com

23

Some Hints
• Recompile ns-2

– Go to ns-2.xx directory
– ./configure (If you edit Makefile, skip this)

• Will use Makefile.in to configure Makefile
• If you want to add new files into ns-2, please modify

Makefile.in and then ./configure
• You might directly change Makefilie

– But there is some drawbacks..

– make clean
– make depend
– make

• How do you know that compiling ns-2 is
successful?
– Check the bin/ns.exe(cygwin) or bin/ns to see if it’s

new (file creation time)

Some Hints
• You should rename the tutorial version of

Ping into “Pong” first
– Add the “Pong” into your ns-2, and check if it

works

– If so, you can start to implement Pong

• Do as early as you can
– Or you WILL NOT make it

24

