Introduction to Wireless and Mobile Networking

Lecture: TCP in wireless and mobile networks

Hung-Yu Wei National Taiwan University

TCP in Wireless and Mobile Networks

- References
 - K. Pentikousis, "A survey of TCP in wired-cumwireless environments," IEEE Communications Surveys, vol. 3, 2000.
 - http://www.crhc.uiuc.edu/wireless/talks/tcpwireless-tutorial.ppt

TCP Overview

Transmission Control Protocol

- Provide reliable transport layer mechanism
- Congestion control and avoidance
- Window-based flow control
- Use ACKs to acknowledge all received bytes
- Use byte sequence number

TCP window flow control

- Additive increase and multiplicative decrease
- Increase window (2 phase)
 - Slow start
 - Congestion avoidance
- Decrease window
 - When detecting packet loss
 - Assume congestion occur

Slow Start

- Additive increase
- Congestion window cwnd
 - Initial value: cwnd=1 MSS (Maximum Segment Size)
 - Receiving every ACK: cwnd=cwnd+1
 - cwnd grows exponentially
- Slow start stops when reaching slow start threshold

Congestion Avoidance

- When receive every ACK
 - cwnd = cwnd +1/cwnd

Wireless TCP

- Challenges in wireless and mobile environment
 - High BER (bit-error rate) in wireless medium
 - Mobility
- How transmission error affect TCP?
 - TCP thinks packet losses are due to congestion
 - Reduce congestion window size
 - Back off its retransmission timer
 - Reduce throughput

Variants of TCP and TCP mechanims

TCP (Transport Control Protocol)

- End-to-end transport layer protocol
- Functionalities
 - Congestion control
 - Flow control
 - Reliable transmission
 - Sequenced delivery

Window Flow Control

- ~ W packets per RTT
- Lost packet detected by missing ACK

Packet Loss

- Assumption: loss indicates congestion
- Packet loss detected by
 - Retransmission TimeOuts (RTO timer)
 - Duplicate ACKs (at least 3)

Issues in Wireless Environment

Wireless Transmissions

- Limited bandwidth
- Long Round Trip Time
 - Severe issue in satellite communications
 - Current 3G cellular also tries to reduce RTT
- High BER
 - Strong FEC might be inefficient
- Short Flows
 - HTTP applications need several small packet transmissions
- Power consumption
 - Long TCP session might be power inefficient

TCP with mobile hosts

• Mobile IP

- Designed for handoff less frequent than 1 per sec
- Handoff results in packet loss
- Might need to distinguish packet losses due to congestion and mobility

Problems

- TCP considers packet losses as indication of congestion
 - Trigger congestion control
- In wireless and mobile networks, packet losses could be due to
 - High BER of wireless transmission
 - Handoff
- Frequent TCP congestion window backoff results in
 - Small window size
 - Limited throughput

Classifications of Solutions

- Link Layer
 - (1) Robust link layer
 - FEC/ARQ
 - (2) TCP-Aware Link Layer solution
 - Snoop
 - (3) TCP-Unaware Link Layer solution
 - TULIP
 - Delayed Duplicate ACK
- Split connection (Transport Layer)
 - Indirect TCP (I-TCP)
 - M-TCP

Classifications of Solutions (2)

- Modified version of TCP
 - TCP SACK
 - TCP FACK
 - TCP Santa Cruz
- Other changes to TCP
 - Change ACK strategy
 - Increase TCP's Initial Congestion Window
 - Explicit Congestion Notification
 - Explicit Loss Notification
 - Fast Retransmit
- New Transport Layer
 - Wireless TCP
- WAP protocol stacks

Link Layer Solution

Link Layer Schemes

- Hide Wireless Link Error from TCP
 - Emulate a wired link
 - Reduce BER with FEC
 - Hide retransmission (L2) from L4
 - Reduce the error rate in wireless medium
 - Automatic Repeat Request (ARQ)
 - Forward Error Correction (FEC)
 - Hybrid FEC/ARQ scheme
- TCP-aware Link Layer Solution
 - Snoop

Link Level Retransmissions

Link Layer: Strength/Weakness

- Advantages
 - No connection state to be maintained at BS
 - Layered structure
 - Shielding the loss to higher-layer protocols
- Disadvantages
 - Do not solve the mobility issue
 - Small timeout value for ARQ
 - Duplicate re-transmission effort

Related work

- FEC
 - Most communication systems use FEC
- · ARQ
 - Cellular system typically uses ARQ
 - In some systems, ARQ is optional (e.g. 802.16)
- AIRMAIL (1995)
 - FEC+ARQ
- Hybrid ARQ
 - FEC+ARQ
 - Soft combining
 - Promising technique in many systems

H. Balakrishnan *et al.*

Snoop

- Blakrishnan, Padmanabhan, Seshan, Katz
 - SIGCOMM 1996
- TCP-aware Link Layer solution
- Snoop Agent locates at BS
- No change required in wired network
- Snoop Agent monitors all TCP session
 - Maintain un-acknowledged TCP segment information at cache
 - Monitor both uplink/downlink
- Soft state

Snoop Agent Operation

- Packet loss detection
 - Receive duplicate ACKs
 - Local timeout
- Hide the packet loss in wireless network
 - Retransmit cached packet
 - Dropping duplicate ACKs at BS to prevent from fast retransmission from source

Snoop Protocol

Example assumes delayed ack - every other packet ack'd

Duplicate acks are not delayed

be able to interpret TCP headers

Design Goal

- TCP sender should not take any congestion control when encounter a packet loss due to wireless transmission error
- TCP sender should just retransmit the packet due to wireless transmission error
- Sender should be shielded by wireless transmission error

Snoop: Strength/Weakness

- Advantages
 - Shielding sender from wireless link error
 - Soft state connection is used
- Disadvantages
 - Link layer overhead
 - Violate modular layer design principle
 - Mobile-side TCP need to be modified
 - Modification at BS

Split Connection Approach

- Split TCP end-to-end connection into two connections
 - Sender to BS
 - BS to receiver
- Handle wireline and wireless TCP
 Separately
 FN
 BS
 -- MH
 Fixed Node
 Base Station
 Mobile Node

Split Connection: I-TCP

ICDCS 95 Bakre & Badrinath

Split Connection Schemes

- Separate packet loss in wireless link and wired link
 - Independent TCP flow control in wireline and wireless linsk
 - May use special transport layer protocol and control parameters in wireless/wired link
- I-TCP (Indirect TCP)
 - Bakre and Badrinath.
 - ICDCS 95
 - Use two standard TCP connections

I-TCP

- MSR (Mobility Support Router)
 - Split TCP operation: 2 logical connections
 - MSR acknowledges on behalf of the mobile host
- Operations
 - Normal TCP between MSR and Sender
 - "wireless TCP" between MSR and mobile host
 - Separate "wireless link" and "user mobility"
- Performance
 - Sender sees more stable connection
 - Recover loss packets faster
 - Handle mobility

Split Connection Approach

Per-TCP connection state

Split Connection : Strength/Weakness • Advantages

- - Do not modify wireline network
 - Possible for special TCP design in wireless network
 - Light-weighted
 - Energy-efficient
- Disadvantages
 - Modification at BS
 - Hard state maintain at BS
 - Violate TCP end-to-end paradigm
 - User mobility will cause problems

Split Connection: M-TCP

ACM CCR 97 Brown & Singh

M-TCP

- M-TCP uses TCP Persist Mode
 - When a new ack is received with receiver's advertised window = 0, the sender enters persist mode
 - Sender does not send any data in persist mode
 except when persist timer goes off
 - When a positive window advertisement is received, sender exits persist mode
 - On exiting persist mode, RTO and cwnd are same as before the persist mode

M-TCP

- Split connection: 2 logical connections
- BS acknowledges "after" receiving ACKs from MH
- Handoff
 - Withheld ack sent with window advertisement =
 0, if MH moves away (handoff in progress)
 - Sender is in persist mode during handoff
 - Sender exits persist mode after handoff, and starts sending packets using same cwnd as before handoff

Compressed M-TCP

- Modified version of M-TCP
 - Proposed by the same authors
- Apply compression to improve performance under limited bandwidth

End-to-End Approaches: ELN

End-to-End Schemes

- Explicit Loss Notification (ELN)
 - Add ELN option to TCP ACK
 - When a packet is dropped by wireless link, ELN in ACK which corresponding to the packet is set
 - When sender receives the ELN set, it retransmit packet without reducing congestion window
 - Indicate non-congestion packet loss
 - Get Link status from Link Layer
 - Useful in multi-hop networks

End-to-End : Strength/Weakness

- Advantages
 - Easily distinguish congestion loss and noncongestion loss
- Disadvantages
 - Wireline-side TCP (i.e. TCP source node) needs to be modified
 - Slow recovery of lost packets

Compared to Snooping

- Similar to Snoop
 - TCP-aware agent to observe packet loss due to wireless transmission
 - Same drawback (need to modify BS)
- Modification of TCP source node
- Protocol dependent (TCP-aware)

Conclusions

TCP in "Wireless" Networks

- Link Layer Approach
 - FEC, ARQ
- Split Approach
 - Link Layer Split (Snoop)
 - Transport Layer Split (I-TCP)
- End-to-End Approach
 - Modify TCP (TCP SACK)
 - Change ACK algorithm
 - New Transport Layer Protocol
 - New protocol suite (e.g. WAP)

TCP in "Mobile" Networks

- Techniques to alleviate TCP misbehaviors caused by "wireless" packet loss might NOT work
 - Some techniques still work
 - Decouple "packet loss == congestion"
 - Split approaches have trouble in "mobile" environment
- Reduce packet losses during handoff
 - Seamless handoff
 - Reduce handoff latency
 - Packet forwarding is useful

Other Issues

- Link Asymmetry
- Long RTT
 - TCP in 3G
- Data and ACK compete for transmission
 - E.g. 802.11
- Frequent route change
 - Ad hoc networks
 - Moving fast result in more trouble ?
 - Answer: it depends....
- 802.11-based multihop network is bad for TCP connections