Introduction to Wireless and Mobile Networking

Introduction to 802.11

Hung-Yu Wei
National Taiwan University
Outline: 802.11

- 802.11 network terminologies
- PHY
- MAC
- Management functions
 - Registration
 - Handoff
 - Power management
 - Security
Overview
About 802.11

- **IEEE standard**
 - A long history 802.11-1997 → 802.11-2007

- **Also known as Wifi**
 - Wi-Fi Alliance (http://www.wi-fi.org)

- **Widely deployment**
 - NTU wireless access on campus
 - WiFly in Taipei city
 - Built-in in your laptop
 - Intel Centrino
 - In your home
 - Wireless router (ADSL-WiFi router)
 - You will see more and more WiFi phones
What 802.11 really is?

• A wireless access standard which defines
 - Physical layer
 - MAC layer
• Not about network layer and above
• Facts
 - Several physical layer technologies
 • Modulation and coding
 • Frequency bands
 - MAC
 • CSMA/CA
 • A few extensions
 - A lot of enhancement
123 & ABC

- 802
 - 802.3
 - 802.11
 - 802.15
 - 802.16
 - ...
 - 802.20
 - 802.21
 - 802.22
 - And more

- 802.11
 - 802.11a
 - 802.11b
 - ...
 - 802.11l ???
 - 802.11x ???
 - 802.11y
 - 802.11z
 - And more
Basics of 802.11 MAC
MAC

- **Medium Access Control**
 - Who and when to access the channel

- **Shared channel**
 - Distributed operation
 - Random access design
MAC

- **CSMA/CA**
 - *Carrier sense* multiple access with *collision avoidance*

- Random backoff

- **RTS/CTS**
More About 802.11
802.11 Network Terminologies

- BSS
- BSA
- ESS
- IBSS
BSS

- basic service set (BSS): A set of stations controlled by a single coordination function
 - [concept] A cell with 1 AP and some MSs
IBSS

• Independent basic service set (IBSS): stand-alone BSS
 - [concept] Ad hoc network
ESS

• Extended service set (ESS): A set of one or more interconnected basic service sets (BSSs) and integrated local area networks (LANs)
 - [concept] Cellular system with multiple cells and multiple BSs

• Identifier
 - ESSID: network name
 - BSSID: MAC address of AP
 - Several BSSID with 1 ESSID
ESS

- Two topologies
 - No overlap
 - With overlap
Layered Protocol Architecture

Internet
High Level Requirements

• Single MAC to support multiple PHY layers
 - DSSS, FHSS, IR
 • 802.11-1999, 802.11b
 - OFDM (2.4GHz, 5GHz)
 • 802.11a, 802.11g

• Mechanism to allow multiple overlapping networks
• Provision to handle inference from other users of the ISM band

• Support for co-existence (relatively new) of other radios in the ISM band such as 802.15 (BlueTooth)

• Mechanisms for hidden terminals
• Options to support bounded delay services
• Provisions for privacy and access control
IEEE 802.11 Protocol Stack
Layered Protocol

Application Data

TCP segment

IP datagram

LLC protocol data unit

MAC frame

19
802.11 Protocol Stack Overview

All protocols in 802 family use LLC
802.11 Protocol Stack Overview

- **Data Link Layer (L2)**
 - Logical Link Control (LLC)
 - Shared LLC protocol within 802 protocol family
 - 802.11 MAC
 - Common 802.11 MAC for contention resolution

- **Physical Layer (L1)**
 - PMD (physical medium dependence) sublayer
 - Different PHY technologies
 - DSSS, FHSS, IR
 - PLCP (physical layer convergence procedure) sublayer
 - Insulate MAC from different PMDs
Logical Link Control (LLC)

• In 802 family of protocols, the LLC layer is the same
 - Insulate higher layers from various lower-layer standards
 • L3 uses the same way to request L2 service
 - LLC could ensure a reliable L2 data stream between source and destination
 - Flow control
LLC frame structure

- **DSAP** (destination service access point)
 - SAP at destination node
- **SSAP** (source service access point)
 - SAP at source node

Control/response information (e.g. seq #)
802.11: L2/L1 Protocol Stack

Logical link control

Contention-free service

Point coordination Function (PCF)

Contention service

Distributed coordination function (DCF)

2.4-Ghz frequency-hopping spread spectrum
1 Mbps
2 Mbps

2.4-Ghz direct sequence spread spectrum
1 Mbps
2 Mbps

Infrared
1 Mbps
2 Mbps

5-Ghz OFDM
6, 9, 12, 18, 24, 36, 48, 54 Mbps

2.4-Ghz direct sequence spread spectrum
5.5 Mbps
11 Mbps

6, 9, 12, 18, 24, 36, 48, 54 Mbps

IEEE 802.11a
IEEE 802.11b
IEEE 802.11g

IEEE 802.11
802.11 PHY
The “PHY” Layer

- **Multiple physical layers**
 - First offering:
 - 2.4 GHz 802.11 Frequency Hopping Spread Spectrum (FHSS) for 1-2 Mbps
 - 2.4 GHz 802.11 Direct Sequence Spread Spectrum (DSSS) for 1, 2, 5.5 and 11 Mbps widely used
 - Emerging High Speed WLAN – exciting future:
 - 5 GHz 802.11 uses Orthogonal Frequency Division Multiplexing (OFDM) → 802.11a
 - 2.4 GHz uses OFDM → 802.11g

- **Not widely used:**
 - 802.11 Diffused Infrared (DFIR)

- **Note, same MAC layer but all 802.11, 802.11a and 802.11b all are incompatible at the physical layer!**
 - Multi-mode backward compatibility in the integrated wireless NICs
Overlapping Frequency channels for the 2.4GHz DSSS
DSSS PLCP PDU (long preamble)

- **Sync**: fixed pattern for synchronization
 - Alternating 1 and 0
- **SFD**: define the beginning of PLCP
 - 1111001110100000
- **Signal**: data rate
- **Service**: reserved
- **Length**: in microseconds
- **FCS**: CRC code
DSSS PLCP PDU (short preamble)

- **Short preamble PLCP**
 - Reduce preamble transmission time
 - Shorter (56 bits) SYNC
 - 2 Mbps for the 4 other fields
802.11 MAC: contention resolution
802.11 - MAC layer

• Traffic services
 - Asynchronous Data Service (mandatory)
 • exchange of data packets based on “best-effort”
 • support of broadcast and multicast
 - Time-Bounded Service (optional)
 • implemented using PCF (Point Coordination Function)

• Access methods
 - DCF CSMA/CA (mandatory)
 • collision avoidance via randomized „back-off“ mechanism
 • minimum distance between consecutive packets
 • ACK packet for acknowledgements (not for broadcasts)
 - DCF w/ RTS/CTS (optional)
 • Distributed Foundation Wireless MAC
 • avoids hidden terminal problem
 - PCF (optional)
 • access point polls terminals according to a list
Transmission Priorities -- IFS

- Defined through different inter frame spaces (IFS)
- No guaranteed, or hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

[Diagram showing IFS with DIFS, SIFS, PIFS, and contention periods]
CSMA/CA

- Station ready to send starts sensing the medium (*Carrier Sense based on CCA, Clear Channel Assessment*)
 - if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending
 - if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)
802.11 example

- **DIFS**: Inter-frame space
- **bo**: Backoff
- **busy**: Medium not idle (frame, ack etc.)
- **boe**: Elapsed backoff time
- **bor**: Residual backoff time
- **packet arrival at MAC**

Diagram shows the interaction of stations 1 to 5 with the medium, including the use of DIFS, backoff, and busy states.
802.11 - CSMA/CA

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receivers acknowledge at once (after waiting for SIFS)
 if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors
802.11 with RTS/CTS

- **Sending unicast packets**
 - station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
 - acknowledgement via CTS after SIFS by receiver (if ready to receive)
 - sender can now send data at once, acknowledgement via ACK
 - other stations store medium reservations distributed via RTS and CTS
Fragmentation
802.11: Random Backoff

- Backoff Time = random() * Slot_Time
 - Slot_Time is a PHY layer parameter
 - (e.g. 20 μs in 802.11-1999 DSSS PHY)
 - random() is a random integer number drawn uniformly from [0,CW]
 - CW is the contention window size
 - CWmin ≤ CW ≤ CWmax
- CWmin and CWmax are PHY-dependent parameters
 - E.g. 802.11-1999 DSSS PHY
 - CWmin=31; CWmax=1023
802.11: Contention Window

- Increment of CW
 - In 802.11, \(CW = 2^n - 1 \)
 - Initialization, \(CW = CW_{\text{min}} \)
 - \(CW \) increase with every retry
 - \(CW \) increases up to \(CW_{\text{max}} \)

- (truncated) binary exponential backoff

Example: \(CW_{\text{min}} = 7, CW_{\text{max}} = 255 \)
Prioritize IFSs

- interframe spacing (IFS)
 - **SIFS**: short IFS
 - **PIFS**: point (coordinated function) IFS
 - **PCF IFS**
 - **DIFS**: distributed (coordinated function) IFS
 - **DCF IFS**
 - **EIFS**: extended IFS

- **SIFS < PIFS < DIFS < EIFS**

![Diagram showing IFSs with SIFS, PIFS, DIFS, and EIFS in a time sequence.](image)
RTS (20 Bytes) / CTS (16 Bytes) Mechanism

- **Toggling the NAV**
 - Hear an RTS
 - Switch NAV on
 - CTS
 - DATA
- **Hear the ACK**
 - Switch NAV off
- **This provides contention free transmission**
MAC State Diagram

1. Wait for frame to transmit
2. Medium idle?
 - No
 - Wait IFS
 - Still idle?
 - No
 - Wait until current transmission ends
 - Exponential backoff while medium idle
 - Transmit frame
 - Yes
 - Transmit frame
802.11 MAC frame structure
MAC Frame structure

```
<table>
<thead>
<tr>
<th>Frame control (FC)</th>
<th>Duration ID</th>
<th>Address 1</th>
<th>Address 2</th>
<th>Address 3</th>
<th>Sequence control</th>
<th>Address 4</th>
<th>Frame body</th>
<th>Frame check sequence (FCS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0-2,312</td>
<td>4</td>
</tr>
</tbody>
</table>
```

bits

```
<table>
<thead>
<tr>
<th>Protocol version</th>
<th>Type</th>
<th>Subtype</th>
<th>To DS</th>
<th>From DS</th>
<th>More Frag</th>
<th>Retry</th>
<th>Power Mgmt</th>
<th>More Data</th>
<th>WEP</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol version</td>
<td>Type</td>
<td>Subtype</td>
<td>To DS</td>
<td>From DS</td>
<td>More Frag</td>
<td>Retry</td>
<td>Power Mgmt</td>
<td>More Data</td>
<td>WEP</td>
<td>Order</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

2 bytes
Type/Subtype

- **Management Type (00)**
 - Assoc. request/response
 - Reassoc. request/response
 - Probe-request/response
 - Beacon
 - Announcement traffic indication (used for sleep mode operations)
 - Authentication/Deauthentication

- **Control Type (01)**
 - Power save poll
 - RTS/CTS
 - Ack
 - CF end and CF end with ACK

- **Data Type (10)**
 - Data/ Data with CF ACK
 - Data Poll with CF/ Data Poll with CF and ACK
 - CF poll/ CF poll CK
Example: Type/Subtype in frame control field (within MAC header)

<table>
<thead>
<tr>
<th>Type (2 bits)</th>
<th>Type Description</th>
<th>Subtype (4 bits)</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Management</td>
<td>0000</td>
<td>Association request</td>
</tr>
<tr>
<td>00</td>
<td>Management</td>
<td>0001</td>
<td>Association response</td>
</tr>
<tr>
<td>01</td>
<td>Control</td>
<td>1011</td>
<td>RTS</td>
</tr>
<tr>
<td>01</td>
<td>Control</td>
<td>1100</td>
<td>CTS</td>
</tr>
<tr>
<td>01</td>
<td>Control</td>
<td>1101</td>
<td>ACK</td>
</tr>
<tr>
<td>10</td>
<td>Data</td>
<td>0000</td>
<td>Data</td>
</tr>
</tbody>
</table>
Control message format

<table>
<thead>
<tr>
<th>Octets: 2</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration</td>
<td>RA</td>
<td>TA</td>
<td>FCS</td>
</tr>
</tbody>
</table>

MAC Header

RTS (20 bytes)

<table>
<thead>
<tr>
<th>Octets: 2</th>
<th>2</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration</td>
<td>RA</td>
<td>FCS</td>
</tr>
</tbody>
</table>

MAC Header

CTS (16 bytes)

<table>
<thead>
<tr>
<th>Octets: 2</th>
<th>2</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration</td>
<td>RA</td>
<td>FCS</td>
</tr>
</tbody>
</table>

MAC Header

ACK (14 bytes)
RTS

- **FCS frame check sequence** = 32-bit CRC
- **RA**: receiver address
 - Data/RTS receiver
- **TA**: transmitter address
 - Data/RTS transmitter
- **Duration**
 - Microseconds
 - Round up to the higher integer
 - $T = \text{data_time} + \text{CTS_time} + \text{ACK_time} + \text{SIFS} \times 3$

Do you know why?
CTS

- **FCS frame check sequence** = 32-bit CRC
- **RA**: receiver address
 - CTS receiver (i.e. data transmitter)
 - Copy from TA in RTS message
- **Duration**
 - **Microseconds**
 - Round up to the higher integer
 - \(T = \text{data_time} + \text{ACK_time} + \text{SIFS} \times 2 \)
 - \(= (\text{Duration in RTS}) - \text{SIFS} - \text{CTS_time} \)

```plaintext
Octets: 2 2 6 4

<table>
<thead>
<tr>
<th>Frame Control</th>
<th>Duration</th>
<th>RA</th>
<th>FCS</th>
</tr>
</thead>
</table>
```

MAC Header
ACK

- RA: receiver address
 - ACK receiver (i.e. data transmitter)

- Duration
 - Microseconds
 - Round up to the higher integer
 - $T = \text{ACK_time} + \text{SIFS}$
802.11 Coordinated Functions: DCF and PCF
802.11: Coordinated Functions

- 2 types of coordinated functions
 - DCF: distributed coordinated function
 - PCF: point Coordination Function
 - Built upon DCF
 - Optional
 - Not always implemented in products
 - Centralized coordination
 - More like cellular BS
PCF on top of DCF
PCF: pollable stations

• Pollable station
 - Able to respond to CF-Poll in PCF mode
 • A node in PCF mode that has MSDU (MAC SDU) to transmit in contention-free period
 - Set More Data field = 1 to notify the point coordinator

• Piggyback control messages are allowed
 - CF-ACK and CF-Poll could be piggybacked after data transmission. For example,
 • Data+CF-Poll
 • Data+CF-ACK
 • Data+CF-ACK+CF-Poll
PCF time frames

- Two periods
 - Contention free interval
 - Contention interval
MAC Timing: PCF Operation

(b) PCF superframe construction
PCF Basic Operations

• **Basic Operations (Downlink)**
 - Point Coordinator (AP) DL transmission
 • Data : DL data
 • CF-Poll: AP polls a station for UL transmission
 • CF-ACK: AP acknowledges a received UL frame
 - Combinations of the above 3 DL operations
 • Support piggyback operation
 • 7 types (i.e. $2^3 - 1$) + Null function

• **Basic Operations (Uplink)**
 - CF-Pollable stations UL transmission
 • Data
 • Data+CF-Ack
 • Null Function,
 • CF-Ack
PCF Frames

- **Data frames (with piggyback options)**
 - Data
 - Data+CF-ACK
 - Data+CF-Poll
 - Data+CF-ACK+CF-Poll

- **Polling and Acknowledges**
 - CF-Poll
 - CF-ACK+CF-Poll
 - CF-ACK

- **Control frames**
 - Beacon: beginning of the contention free period
 - CF-End frame: end of the contention free period
PCF Example

Figure 62—Example of PCF frame transfer
802.11: other functions
MAC Management Sublayer Functions

• Registration
• Handoff
• Power Management
• Security
Registration

- Beacons sent periodically (every 100ms) by AP to establish time sync. (TSF) and maintain connectivity or associations
 - contains BSS-ID used to identify the AP and network, traffic indication map (for sleep mode), power management, roaming
 - RSS measurements are based on the beacon message
- AP and mobile devices form “associations”, mobile device “registers” with AP.
- Mobiles send “requests” and APs “responses”
- Only after registering can mobiles send/receive DATA
Association Procedure

1. Association Request
2. Association Response
3. Traffic
Re-association with old AP

1. Move
2. Move back
3. Reassociation Exchange
Roaming between APs

- **IAPP (Inter Access-Point Protocol)**
 - 802.11f

- **Layer-2 handoff in 802.11 networks**
 - Topic of research
 - Reduce L2 handoff latency
 - Integrate with L3 handoff to improve overall handoff performance

- **Issues**
 - Security: authentication
 - Scanning channels (multiple possible channels)
Layer-2 Handoff

1. Strong signal
2. Weak signal; start scanning for handoff
3. Probe Request
4. Probe response
5. Choose AP with strongest response
6. Reassociation Request
7. Reassociation Response
8. IAPP indicates reassociation to old AP

Beacon periodically

IAPP: Inter Access Point Protocol
Power Management Overview

• Why power management?
 - Most of the time mobile devices receive data in burst and then are idle for the rest of the time.
 - Can exploit that by going into a power saving idle mode – “powering off”. However, need to maintain on-going sessions

• Basic idea
 - Mobile sleeps, AP buffers downlink data, and sends the data when the mobile device is awakened
 - Using the Timing Sync Function all mobiles are synchronized and they will wake up at the same time to listen to the beacon.
 • Check the beacon to see if the mobile needs to wake up

• Compare to cellular network power control
 - In comparison to the continuous power control in cellular networks this power conservation is geared towards burst data
Power Management in 802.11

- **MS has 2 modes**
 - Active mode (AM)
 - Power-save (PS) mode

- **MS enters power-save (PS) mode**
 - Notify AP with “Power Management bit” in Frame Control field
 - PS mode MSs listen for beacons periodically

- **MS enters active mode**
 - The MS sends a power-save poll (PS-Poll) frame to the AP and goes active
Power Management in 802.11

• AP operations (when MS is in PS mode)
 - Does not arbitrarily sends MSDU to MS in PS mode
 - Buffer MSDUs at AP until MS “wake up”
 - MSs with buffered MPDUS at AP are identified with traffic indication map (TIM).
 • TIM is included in periodic beacons
 • MS learns that it has data buffered by checking the beacon/TIM

• AP operations when MS goes into active mode
 - The AP then sends the buffered data to the mobile in active mode
Concept: Paging and Sleep mode

- **Sleep mode (dormant mode)**
 - Save power
- **Wake up mechanism**
 - Paging
- **Combine with location management mechanism (in cellular networks not in 802.11)**
 - Paging area V.S. location area
 - Frequency of location area update
 - Savings
 - Power consumption
 - Signaling overhead
- **Paging + IP → IP Paging**
Listening to the beacon for power management

- **Beacon for synchronization**
 - Quasi-periodic
 - Might be deferred due to busy medium
TIM and DTIM

- **TIM (traffic indication map)**
 - Contain the info of PS mode stations with data buffered at AP
 - TIM interval: transmit TIM (quasi) periodically
 - TIM might be deferred due to busy medium

- **DTIM (delivery traffic indication map)**
 - Similar to TIM, DTIM is used for multicast/broadcast
 - DTIM interval = multiple TIM interval

![Diagram showing TIM and DTIM intervals and station activity](attachment:image.png)
Summary: Power Management Function

- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated - no central AP
 - collision of ATIMs possible
 - Scalability issues!
Some Critical Enhancement

- IEEE 802.11e
 - QoS

- IEEE 802.11i
 - Enhanced security
Security: Two schemes supported

• Open system authentication is default
 - AP and mobile use a shared key that they exchange as a request/response
 - Sends the “key” using a 40-bit secret code that is shared by the AP and mobile

• Wired Equivalent Privacy (WEP)
 - Pseudo random generator is used along with a 40-bit secret key to create a key sequence that is simply XOR-ed with the message
 - Susceptible to attacks
802.11i: Security Enhancement

- WEP security is weak
- 802.11i standard for better security
 - Authentication
 - Authentication protocol
 - EAP (Extensible Authentication Protocol)
 - Authentication Server
 - RADIUS (Remote Authentication Dial-In Service) server
 - Data privacy (encryption)
 - 128-bit AES keys
 - 104-bit RC4 keys
 - WEP uses 40-bit RC4
 - Wi-Fi Protected Access (WPA)
802.11i service flow

- Security capabilities discovery
- Authentication
- Key management
- Key distribution
- Data protection
QoS Enhancement for 802.11

- **IEEE 802.11e**
 - Enhanced DCF (EDCF), to provide service differentiation
 - Traffic Classes (TC)
 - Give priorities to different TCs
 - Multiple prioritized queues
 - Assign different CWmin values to different traffic classes
 - Assign an Arbitration IFS (AIFS) instead of DIFS, to different traffic classes, resulting in smaller AIFS values for high priority classes
 - Transmit Opportunity (TXOP)
 - “time” window to send as many packets as possible
 - Avoid low-rate nodes use excessive amount of resources
 - Wi-Fi Multimedia (WMM) certified products
 - Hybrid coordination function (HCF) to replace PCF.
Access Categories
IFS

Different AIFS for different traffic classes
EDCA

• In EDCA (enhanced distributed channel access) scheme, there are 4 access categories (ACs) which have their own arbitrary IFS (AIFS) and contention window (CW) values
 – \(\text{AIFS}[AC] = \text{AIFSN}[AC] \times T_{\text{slot}} + T_{\text{sifs}} \)

<table>
<thead>
<tr>
<th></th>
<th>AC(_0)</th>
<th>AC(_1)</th>
<th>AC(_2)</th>
<th>AC(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values of AIFSN</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Values of (CW_{\text{min}})</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Values of (CW_{\text{max}})</td>
<td>1024</td>
<td>1024</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>
Some Exciting Enhancement

- Higher throughput
- Mesh Network (ad hoc network)
 - Multihop relay
- Fast handoff
- Vehicular networking support
- Spectrum sharing and cognitive radio
Faster Transmission: Physical Layer

- **802.11a**
 - Frequency band: 5 GHz
 - Max data rate: 54 Mbit/s
 - OFDM

- **802.11b**
 - Frequency band: 2.4 GHz
 - Max data rate: 11 Mbit/s
 - DSSS

- **802.11g**
 - Frequency band: 2.4 GHz
 - Max data rate: 54 Mbit/s
 - OFDM

- **802.11n**
 - Frequency band: 2.4 GHz and 5 GHz
 - Max data rate: 248 Mbit/s
 - MIMO
Spectrum Sharing and Cognition

• 802.11y
 - 3650-3700 MHz band
 - Co-existence with other wireless technologies
 - spectrum sharing design
 • E.g. 802.16h license-exempt
Better Management and Handoff

• IEEE 802.11k
 - Radio resource measurement enhancements
• IEEE 802.11v
 - Wireless Network Management
• IEEE 802.11r
 - Fast handoff
Some Interesting Enhancement

• **IEEE 802.11p**
 - WAVE (Wireless Access for the Vehicular Environment)

• **IEEE 802.11s**
 - ESS Extended Service Set **Mesh** Networking
802.11k

• Amendment: radio resource measurement
 - For example:
 • Noise histogram
 • Channel load
 • Station statistics
 - Delay
 - Fail count
 - Retry count
 • Neighbor report
 • Link measurement
 - “RF ping”
 - Measure signal strength
802.11k

• Through wireless measurement, we can manage 802.11 network better
 - For example
 • Load balancing
 • Selection the “best” access point
 • Facilitate fast handoff
 - Know the channel condition and make handoff decision better
 - Fast handoff mechanism is defined in 802.11r
802.11v

- Amendment: Wireless Network Management
 - Allow configuration of client devices while connected to IEEE 802.11 networks
- For example
 - Flexible multicast broadcast
 - Sleep mode management
 - Event Request/Reply
 - e.g transition event (handoff)
 - Diagnostic Request/Report
 - Operating Parameters STA Report
802.11r

- **Amendment: Fast BSS Transition**
 - Fast handoff design between 802.11 APs
 - Reduce handoff latency is critical for real-time applications
 - Security re-association during handoff
 - **Mechanism**
 - Authentication
 - Key management
 - Fast BSS transition
802.11s

- Amendment: Mesh Networking

Figure s2—Example mesh containing MPs, Mesh APs, and Mesh Portal.
802.11s

- **Mesh networking** ➔ multihop relay

- **System architecture**
 - **Mesh Portal**
 - Gateway (Connect to Internet)
 - **Mesh Point**
 - Relay node
 - **Mesh AP**
 - Acts as an AP (from STA’s perspective)
 - Utilize mesh connectivity
802.11s “routing”

- Hybrid Wireless Mesh Protocol (HWMP)
 - Inspired by AODV
 - Modified for
 - MAC address-based path selection
 - Link metric awareness.
 - 2 routing modes
 - On demand peer-to-peer mode
 - Proactive tree building mode
802.11p

• Amendment: Wireless Access in Vehicular Environments

• WAVE BSS
 - i.e. 802.11p access point
 - The WBSS provides rapid establishment of a LAN
Vehicular Wireless Access

802.11p

ARM RISC processor

~1W

magnet

802.11p

ARM RISC processor

~1W
Types of Vehicular Communications

• **V2V**
 - Vehicular to Vehicular

• **V2I**
 - Vehicular to infrastructure

• **I2V**
 - Infrastructure to vehicular

• **Application**
 - Driving safety
 - Toll → ETC
 - Entertainment
 - Network access
802.11p enhancement

• Faster association and re-association
 - It takes time to connect to 802.11 AP
 • Car moves fast
 • Reduce the necessary connection time

• Physical layer transmission between high-speed tx/rx nodes
 - Doppler effect
Review: 802.11
Summary: 802.11

- Why CSMA/CD does not work?
- Problems
 - Hidden Terminal Problem
 - Exposed Terminal Problem
- CSMA/CA
 - Carrier Sensing
 - Physical carrier sensing
 - Virtual carrier sensing (NAV)
 - Collision avoidance
 - If medium is busy, randomly backoff
 - CW(binary exponential random backoff)
- IFS
- RTS/CTS
- DCF and PCF