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Why Wireless Economics 
and Games?



Wireless Utopia

• Wireless spectrum is unlimited

• Wireless communication is fast and reliable

• Heterogeneous wireless technologies co-exist 
in harmony

• Wireless users have reasonable data needs

• Wireless providers maximize social welfare



Wireless Reality
• Wireless spectrum is unlimited very limited

• Wireless communication is fast and reliable is  
slow and unreliable

• Heterogeneous wireless technologies co-exist 
in harmony compete and interfere with each 
other

• Wireless users have reasonable exploding data 
needs

• Wireless providers maximize social welfare 
profits



How Economics can Help?

• Match wireless supply and demand

• Limited spectrum vs. new wireless services

• Spectrum allocation and auction

• Secondary spectrum markets

• Limited cellular capacity vs. growing data demands

• Smart data pricing

• Wi-Fi data offloading



Tech-Econ Coupling

• Different technology characteristics 

• Cellular vs. Wi-Fi: coverage, data rate, and cost

• Distributed and heterogeneous networks

• Different operators have different interests

• Sophisticated devices capable of adaptation and 
optimization

• New technology adoption and evolution

• Cellular technology upgrade (3G -> 4G)

• Skype Wi-Fi adoption



Tutorial Outline

• Theory 

• Game theory

• Economics

• Applications 

• Technology background and problem formulation

• Key economics and game methodologies



Theory



Theory Outline

• Game theory:

• Static games 

• Dynamic games

• Economics:

• Price discrimination

• Network Externality



Game Theory: 
Static Games



Prisoner's dilemma

• Two suspects are arrested.
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• The police lack sufficient evidence to convict 
the suspects, unless at least one confesses.



Prisoner's dilemma

• Two suspects are arrested.

• The police lack sufficient evidence to convict 
the suspects, unless at least one confesses.

• The police hold the suspects in separate 
rooms, and tell each of them three possible 
consequences.



Prisoner's dilemma

• If both deny: 1 month in jail each. 
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Prisoner's dilemma

• If both deny: 1 month in jail each. 

• If both confess: 6 months in jail each.

• If one confesses and one denies

• The one confesses: walk away free of charge. 

• The one denies: serve 12 months in jail. 



Prisoner's dilemma
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Strictly Dominant

• Confess is a strictly dominant strategy for 
player 1, 

• It always leads to the best payoff, independent 
of player 2’s strategy.
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Strictly Dominant

• Confess is also a strictly dominant strategy for 
player 2.
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Prisoner's dilemma

• Prediction of the game: (confess, confess) 

• Dilemma: 

• (confess, confess) leads to a payoff of (-6, -6)  

• (deny, deny) leads to a payoff of (-1, -1)

• Key reason: selfish optimization. 



Finding Equilibrium

• When there are no strictly dominant strategies, 
we can not easily “reduce” the game. 

• Similar analysis: derive the best responses. 

• A stable outcome (equilibrium) will be mutual 
best responses. 



Stag Hunt

• Two hunters decide what to hunt without 
communications. 

• Each one can hunt a stag (deer) or a hare.

• Successful hunt of stag requires cooperation.

• Successful hunt of hare can be done 
individually.

• Simultaneous decisions without prior 
communications.



Stag Hunt
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Stag Hunt

• There is no strictly dominant or strictly 
dominated strategies.

• We will find out a player’s best response 
given the other player’s choice.
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Nash Equilibrium (NE)

• A pair of strategies = Nash Equilibrium (NE) 
• If each player is choosing the best response given the 

other player’s strategy choice.

• At a Nash equilibrium, no player can perform 
a profitable deviation unilaterally. 



Equilibrium Selection

• How to choose between two Nash equilibria?

• (Stag, Stag) is payoff dominant: both players get the 
best payoff possible. 

• (Hare, Hare) is risk dominant: minimum risk if 
player is uncertain of each other’s choice.

• Many theories, open problem. 



Battle of Sexes

• A couple decide where to go during Friday 
night without communications.

• Husband prefers to go and watch football.

• Wife prefers to go and watch ballet. 

• Both prefer to stay together during the night.
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Continuous Games

• Next we show a continuous game

• A player has continuous (infinite) choices



Cournot Competition

• Two firms competing in the same market.

• Each firm i chooses its production level qi.

• The cost of producing one product is c. 

• Total products in the market is Q= q1 + q2.

• The market clearing price is P(Q)=max(a-Q,0).



• Each firm i wants to choose qi  to maximize his 
profit

Cournot Competition

⇡i (qi, qj) = qi [P (qi + qj)� c] = qi [a� (qi + qj)� c]



• Assume the Nash equilibrium is             .

Nash Equilibrium

(q⇤1 , q⇤2)



• For firm i, its best response for a given qj

• The solution

Best Response

max

0qi<1
⇡i(qi, q

⇤
j ) = max

0qi<1
qi

⇥
a� (qi + q⇤j )� c

⇤

qi =
1
2

�
a� q⇤j � c

�



• So we have

• This leads to the Nash equilibrium as 

Nash Equilibrium

q⇤1 = q⇤2 =
a� c

3
.

q⇤1 =
1
2

(a� q⇤2 � c)

q⇤2 =
1
2

(a� q⇤1 � c)



Geometric Solution

((a� c)/2, 0) (a� c, 0)

(0, a� c)

(0, (a� c)/2)

q1

q2

(q⇤1 , q⇤2) = ((a� c)/3, (a� c)/3))

q2 =
1
2
(a� q1 � c)

q1 =
1
2
(a� q2 � c)



Key Concepts Review

• Strictly dominate strategy

• Nash equilibrium

• Continuous games



Theory Outline

• Game theory:

• Static games 

• Dynamic games

• Economics:

• Price discrimination

• Network Externality



Game Theory: 
Dynamic Games



Market Entry

• Firm 1 is considering entering a market that 
currently has an incumbent (firm 2). 

• Firm 1 can choose “In” or “Out”. 
• If “Out”, firm 1 gets nothing, and firm 2 enjoys 

monopoly. 

• If “In”, firm 2 can choose “Accept” or “Fight”.
• If firm 2 accepts, then firm 1 gets a larger market 

share due to a newer technology. 

• If firm 2 fights, then there is a price war and both 
firms get negative profits. 
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Market Entry

• Consider the Nash equilibrium 
(Out, Fight if entry occurs).

• Firm 1 chooses to stay Out 
because of firm 2’s threat of 
Fight. 

Firm 1 Out
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Accept Fight
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Non-credible Threat

• However, if firm 1 chooses In, 
then firm 2 will actually 
choose to Accept instead.  

• Hence Fight is a non-credible 
threat.

Firm 1 Out

In

0, 2

Firm 2
Accept Fight

2, 1 -3, -1



Equilibrium Refinement

• Principle of sequential rationality: an 
equilibrium strategy should be optimal at 
every point of the game tree. 

• Examine each subgame through backward 
induction. 
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Equilibrium

Firm 1 Out

In

0, 2

Firm 2
Accept Fight

2, 1 -3, -1



Subgame Perfect 
Nash Equilibrium

• A strategy profile is a subgame perfect Nash 
equilibrium (SPNE) if it is a Nash equilibrium of 
every subgame of the original game.

• For market entry game, the unique SPNE is 

(In, Accept if entry occurs). 



Credible Threat

• How to make credible threat?

• Eliminate choices.
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SPNE 

• The unique SPNE of the Dr. Strangelove game 
is (Not Attack, Counter-Attack if Country A 
attacks). 



First Mover Advantage

• Let us look at how the first mover can have an 
advantage. 
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Sequential 
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Sequential 
Battle of Sexes

• Unique subgame perfect Nash equilibrium is 
(Football, (Football if Husband chooses 
Football, Ballet if Husband chooses Ballet)).

• Although the equilibrium path will be 
Husband picking Football and Wife picking 
Football, we need to specify how the Wife will 
pick if the Husband picks Ballet. 

• SPNE is a contingency plan that specifies the 
action at every point in the game tree.
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Battle of Sexes
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Simultaneous Moves

• Multiple players can move in the same stage. 



Market Entry II

• Firm 1 can choose to stay out or enter the 
market. 

• After firm 1 enters the market, both firms need 
to make “accept” or “fight” decisions 
simultaneously, with four different possible 
outcomes.  
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Market Entry II
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Backward Induction

• First consider the simultaneous interactions in 
the second stage (after entry occurs). 
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• Accept is a strictly dominant strategy for Firm 1.

• Unique Nash equilibrium is (Accept, Accept). 
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Market Entry II

• Unique subgame perfect Nash equilibrium is 
((In, Accept if entry occurs), Accept if entry 
occurs).



Key Concepts Review

• Subgame Perfect Equilibrium

• How to make credible threats

• Simultaneous moves in a single stage



Theory Outline

• Game theory:

• Static games 

• Dynamic games

• Economics:

• Price discrimination

• Network Externality



Economics:
Price Discrimination



Price Discrimination 

• A company sells one type of product to consumers to 
maximize profit (revenue minus cost).

• No price discrimination: charge the same price for

• Each consumer

• Each unit of the product

• Price discrimination: changing one or two of the 
above assumptions



Three Types

• First-degree: Perfect price discrimination

• Charge each consumer the most he is willing to 
pay for each unit of product. 

• Second-degree: Declining block pricing 

• Charge different prices for different units of 
products, but not differentiating consumers. 

• Third-degree: Multi-market price discrimination

• Charge different prices for different consumers, 
but not differentiating products.



Example
• A single product with no cost.

• Alice is wiling to pay $10 for the 1st unit and $2 for 
the 2nd unit. Bob is willing to pay $7 for a single unit.

• Maximum revenue w/o differentiation: $14.

• First-degree: charge Alice $10+$2 for two units, and 
Bob $7 for one unit. Revenue: $19. 

• Second-degree: charge $7 for one unit, and $12 for 
two units. No consumer difference. Revenue: $19. 

• Third: charge Alice $6 per unit, and Bob $7 per unit. 
No quantity discount. Revenue: $19.



How to Discriminate

• Identify consumer types

• Age

• Time

• ...

• Prevent resale

• Using photo ID for airline tickets

• ...



By Age



By Time

• Kindle 1

• 11/07, $399

• Kindle 2

• 2/09, $399; 7/09, $299 

• 10/09, $259; 6/10, $189

• Kindle 3, 

• 8/10, $139

• 9/11, $79



Even more Dynamic



More innovative Ones

• Orbitz shows more expensive hotel options to Mac 
users than windows users (source: WSJ 08/12)



Economics:
Network Externality



Network Externality

• Any side effect imposed by the action of a player on a 
third party not directly involved. 

• Can be either negative (cost) or positive (benefits).



Negative Externality
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Negative Externality

• Negative externality distorts the market and reduces 
social welfare

• How to correct: Pigovian tax (one approach)

• Impose additional tax on entities generating the 
negative externalities

• Examples: pollution tax, cigarette taxes ($1.01 per 
pack of US federal tax in 2009) , congestion pricing 
(Electronic Road Pricing in Singapore)  



Positive Externality



Positive Externality



Network Effect



Network Effect

• Metcalfe’s law’80

• A network with n nodes has up to n(n-1)/2 unique 
connections

• Hence the network value is roughly O(n^2)

• Briscoe-Odlyzko-Tilly’06 refinement

• Not all connections are equally important

• The importance of connections decreases as 1, 1/2, 
1/3, ..., 1/(n-1), with the sum ~ log(n)

• A network value grows O(n*log(n))



Theory Outline

• Game theory:

• Static games 

• Dynamic games

• Economics:

• Price discrimination

• Network Externality



Applications

Graphical congestion games (static game)

Spectrum sensing-leasing tradeo↵ (dynamic games)

Spectrum leasing competition (oligopoly competition)

Partial price di↵erentiation (price di↵erentiation)

Distributed power control (negative network externality)

Cellular network upgrade (positive network externality)

Jianwei Huang (NCEL@CUHK) Tutorial 2 / 84



Our Focus

Key motivation

Key modeling

Key methodology

More results can be found in the papers
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Graphical Congestion Games

R. Southwell, X. Chen, and J. Huang, “Quality of Service Games for Spectrum
Sharing,” IEEE Journal on Selected Areas of Communications, 2014

X. Chen and J. Huang, “Distributed Spectrum Access with Spatial Reuse,” IEEE
Journal on Selected Areas in Communications, 2013

C. Tekin, M. Liu, R. Southwell, J. Huang, and S. Ahmad, “Atomic Congestion
Games on Graphs and Their Applications in Networking,” IEEE/ACM Transactions
on Networking , 2012
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Congestion Game

Each user chooses which resource to use considering congestion
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Graphical Congestion Game

1

3

2 4

Graph characterizes users’ relationship
I Nodes: users
I Edges: potential congestion relationship
I Colors: resource choices

Users 2 and 4 will never generate congestion to each other
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Channel Selection and Interference Management

Users: mobile devices

Resources: channels

Congestion: interferences
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Graphical Congestion Games (GCG) Model
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Key Question 1

Does GCG have a unique Pure Nash equilibrium (PNE)?
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PNE May Not Exist

1

32

-1

0 0

No PNE: at least one player can improve its payo↵ by switching.

Player 1 switches, but player 3 becomes unsatisfied.

Player 3 switches, but player 2 becomes unsatisfied.

Player 2 switches, but player 1 becomes unsatisfied.
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PNE May Not Be Unique
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0

This is not a PNE: player 1 can improve by switching to Black.

This is a PNE.

This is another PNE.
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Existence of PNE: Tree

1
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3

4 6

Proof idea:

I Consider a GCG with a PNE.
I Add a new player with a single connection with the original GCG.
I Show that the new GCG also has a PNE.
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Existence of PNE: Directed Weighted Tree
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Directed weighted tree: the corresponding undirected graph is a tree.
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Key Question 2

How to achieve a PNE?
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Asynchronous Better Response

1

43

2-2

-2

-2

-2

Asynchronous better response updates: players improve, one at a time

Step 1: Player 1 switches to Black

Step 2: Player 4 switches to Black, and reaches a PNE
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Asynchronous Better Response
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Asynchronous better response updates: players improve, one at a time

Step 1: Player 1 switches to Black

Step 2: Player 4 switches to Black, and reaches a PNE
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Finite Improvement Property (FIP)

Definition (FIP)

A GCG has the Finite Improvement Property (FIP) if every su�ciently
long sequence of better response updates leads to a PNE.
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Existence of FIP: Directed Acyclic Graph

1

32

4

10
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5

1 13 2 4

10

6

5

1

Directed acyclic graph: graph does not contain cycles.

Existence of PNE:
I Create a topological sort: 3, 2, 4, 1
I Construct a PNE by letting players sequentially update their strategies

Can further prove the existence of FIP.
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Case Study: Spatial QoS Satisfaction Games

CongestionThreshold

c
nQ

cIc
nT

Demand nD

Data Rate

1 nU 1� nU

Spatial QoS satisfaction game always has the FIP.

With homogenous users: any PNE is socially optimal.

With homogeneous channels: design an algorithm to generate a
socially optimal PNE.
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Modeling Wireless Channel Selections

Protocol interference model

Undirected unweighted graph: symmetric interference relationship

Directed unweighted graph: users have di↵erent
transmission/interference ranges
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Modeling Wireless Channel Selections

Protocol interference model

Undirected unweighted graph: symmetric interference relationship

Directed unweighted graph: users have di↵erent
transmission/interference ranges

Transmission� Edge

Interference�Edge

Transmission�
Range��ɷ1

Transmission�
Range��ɷ2

Transmission�
Range��ɷ3

Rx1

Rx2

Rx3

Tx1

Tx2

Tx3

Interference�Graph

Tx1ͲRx1

Tx2ͲRx2

Tx3ͲRx3

Jianwei Huang (NCEL@CUHK) Tutorial 19 / 84



Modeling Wireless Channel Selections

Physical interference model

Data rate increasing in signal-to-interference-plus-noise ratio (SINR)

SINR =
h

n,nPn

⌧
0

B

i

+
P

m:m 6=n,X
m

=r

h

m,nPm

.

Interference is weighted and asymmetric:
P

m:m 6=n,X
m

=r

h

m,nPm

Need to consider directed and weighted graph
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Simulation Setup

Users are uniformly distributed in an area with size L⇥ L m

2.

Fixed user transmission power P

n

= 100mW.

Channel bandwidth of B

r

= 20MHz.

User payo↵ equals data rate log(1 + SINR).

Distance-based channel gain h

m,n = 1/d

4

m,n.
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Properties of Graphs

The underlying graph is weighed, directed, with loops.
I A PNE may not exist.

As network size L increases, interferences become approximately
symmetric

I Users can be approximated as dots in the network
I The graph becomes undirected and weighted
I Theory implies that GCG has FIP, and thus a PNE exists.
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Percentage of Convergence

Count convergence faster than 500 slots.
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Generalization of Payo↵ Functions

Modeling more general (wireless) resource sharing mechanisms

Example: payers share channels based on p-persistent random access
with player-specific contending probability

U

n

(X) = ✓
X

n

B

n

X

n

g

n

(NX

n

n

(X)) = ✓
X

n

B

n

X

n

p

n

Y

i2NX

n

n

(X)

(1� p

i

)

Construct special potential function to prove FIP.
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Spectrum Sensing-Leasing Tradeo↵

L. Duan, J. Huang, and B. Shou, “Investment and Pricing with Spectrum
Uncertainty: A Cognitive Operators Perspective,” IEEE Transactions on Mobile
Computing, 2011
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Spectrum Is Scarce
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Spectrum Is Under-Utilized

c�Share Spectrum Co. Ltd.
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Cognitive Virtual Network Operators

Virtual: does not own radio spectrum (or even physical infrastructure)

Flexible spectrum acquisition

Investment Choices Dynamic Leasing Spectrum Sensing
Cost High Low

Reliability High Low

Pricing & spectrum allocation among local users to maximize profit
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Network Model
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Two Spectrum Investment Choices

Both on a short time scale

�

Sub Channels� 'Operator s Sensed Band Leased Band'Operator s'PUs BandActivity

1t  
( )f HZ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2t  

BandSpectrum Band'Owner s Spectrum 'Owner s TransferenceService
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Four-Stage Stackelberg Game

Operator
(leader)

Users
(followers)

Sensing Realization α

Stage I

Sensing Bandwidth Bs

(with unit cost Cs)

Stage II

Leasing Bandwidth Bl

(with unit cost Cl)

Stage III

Pricing π

Stage IV 

User Demand {wi}
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Backward Induction & Subgame Perfect Equilibrium
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(with unit cost Cl)

Stage III

Pricing π

Stage IV 

User Demand {wi}
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Stage IV: Users’ Bandwidth Demands

Physical layer model: users share the spectrum using OFDM
I No interferences
I Users request bandwidth from the operator

User k’s wireless characteristics:

g

k

=
P

max

k

h

k

n

0

I
P

max

k

: maximum transmission power
I

h

k

: channel condition
I

n

0

: background noise density

User k’s data rate

r

k

(w
k

) = w

k

ln(1 + SNR
k

) = w

k

ln

✓
1 +

g

k

w

k

◆
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Users’ Payo↵ Functions

Assume that all users operate in the high SNR regime

r

k

(w
k

) ⇡ w

k

ln

✓
g

k

w

k

◆

User k’s payo↵

u

k

(⇡,w
k

) = w

k

ln
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w
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◆
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k
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Users’ Optimization Problems

User i ’s Bandwidth Optimization Problem

w

⇤
k

(⇡) = arg max
w

k

�0

u

k

(⇡,w
k

) = g

k

e

�(1+⇡)

SNR⇤
k

= g

k

/w

⇤
k

= e

1+⇡: same (fair) for all users

Payo↵ u

k

(⇡,w⇤
k

) = g

k

e

�(1+⇡): linear in g

k
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Stages III, II and I

Stage III: operator optimizes over price ⇡:

R

III

(B
l

,B
s

, ↵) = max
⇡�0

min

 
⇡
X

k

w

⇤
k

(⇡), ⇡ (B
l

+ B

s

↵)

!
�(B

s

C

s

+ B

l

C

l

) .

Stage II: operator optimizes over leasing bandwidth B

l

:

R

II

(B
s

, ↵) = max
B

l

�0

R

III

(B
l

,B
s

, ↵).

Stage I: operator optimizes over sensing bandwidth B

s

:

max
B

s

�0

E↵2[0,1]

[R
II

(B
s

, ↵)] .

I Assumption: sensing uncertainty ↵ follows uniform distribution.
I Will be relaxed later.
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Equilibrium Summary

Unique equilibrium.

Sensing Cost C

s

� C

l

2

1�e

�2C

l

4

 C

s

 C

l

2

Sensing B

⇤
s

0 B

L⇤
s

2
⇥
Ge

�(2+C

l

),Ge

�2

⇤

Sensing Factor ↵ 0  ↵  1 0  ↵  Ge

�(2+C

l

)/B

L⇤
s

↵ > Ge

�(2+C

l

)/B

L⇤
s

Leasing B

⇤
l

Ge

�(2+C

l

)

Ge

�(2+C

l

) � B

L⇤
s

↵ 0

Price ⇡⇤ 1 + C

l

1 + C

l

ln
⇣

G

B

L⇤
s

↵

⌘
� 1

User k’s SNR e

(2+C

l

)

e

(2+C

l

)

G

B

L⇤
s

↵

User k’s Payo↵ g

k

e

�(2+C

l

)

g

k

e

�(2+C

l

)

g

k

(BL⇤
s

↵/G )

Jianwei Huang (NCEL@CUHK) Tutorial 37 / 84



Impact of Sensing Uncertainty on Operator

Realized profit increases with ↵
I Can be smaller than no sensing

Smaller C

s

leads to more aggressive sensing and less reliable supply

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Sensing Realization Factor α

N
or

m
al

iz
ed

  R
ea

liz
ed

 P
ro

fit
 R

IIC
S1

/2
 (α

)/G

Cl=2,Cs=0.8
Cl=2,w./o. sensing
Cl=2, Cs=0.5
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Impact of Sensing Uncertainty on Users

Users’ payo↵s never decrease under sensing

0 0.2 0.4 0.6 0.8 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sensing Realization Factor α

N
or

m
al

iz
ed

 R
ea

liz
ed

 P
ay

of
f o

f U
se

r  
u i* (α

) /
g i

Cl=2, Cs=0.8
Cl=2, Cs=0.5
Cl=2, w./o. sensing

Jianwei Huang (NCEL@CUHK) Tutorial 39 / 84



Spectrum Leasing Competition

L. Duan, J. Huang, and B. Shou, “Competition with Dynamic Spectrum Leasing,”
IEEE Transactions on Mobile Computing, 2013
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Network Model

 
 
 

Secondary users (transmitter-receiver pairs) 

Spectrum 
owner  

Operator i Operator j 

Investment 
(leasing bandwidth)

Pricing 
(selling bandwidth) 

Spectrum 
owner 
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Three-Stage Multi-leader-follower Game

Stage I: Leasing Game

Leasing Bandwidth B1 and B2

(with unit costs C1 and C2)

Stage II: Pricing Game

Pricing π1 and π2

Stage III 

User k Chooses One 

Operator i and Demand wki

Operators
(leaders)

Users
(followers)

B
a
c
k
w

a
rd

 In
d

u
c
tio

n
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Stage III: Users’ Bandwidth Demands

User k’s payo↵ of choosing operator i = 1, 2

u

k

(⇡
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,w
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) = w
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ln

✓
P

max

i

h

i

n

0

w
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I Optimal demand: w
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e
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I Optimal payo↵: u

k

(⇡
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,w⇤
ki

(⇡
i

))

User k prefers the “better” operator: i

⇤ = arg max
i=1,2 u

k

(⇡
i

,w⇤
ki

(⇡
i

))

Users demands may not be satisfied due to limited spectrum
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Stages II: Pricing Game

Players: two operators

Strategies: ⇡
i

� 0, i = 1, 2

Payo↵s: profit R

i

for operator i = 1, 2:

R

i

(B
i

,B
j

, ⇡
i

, ⇡
j

) = ⇡
i

Q

i

(B
i

,B
j

, ⇡
i

, ⇡
j

)� B

i

C

i
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Stage II: Pricing Equilibrium

Symmetric equilibrium: ⇡⇤
1

= ⇡⇤
2

.

Threshold structure:
I Unique positive equilibrium exists B

1

+ B

2
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Stage I: Leasing Game

Players: two operators

Strategies: B

i

2 [0,1), i = 1, 2, and B

1

+ B

2

 Ge

�2.

Payo↵s: profit R

i

for operator i = 1, 2:
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✓
ln

✓
G

B

i

+ B

j

◆
� 1� C

i

◆
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Stage I: Leasing Equilibrium

Linear in wireless characteristics G =
P

i

g

i

;

Threshold structure:
I Low costs: infinitely many equilibria
I High comparable costs: unique equilibrium
I High incomparable costs: unique monopoly equlibrium

�
1j iC C �

( )L

1

10 iC

jC

( )HC

( )HI

( ')HI

1j iC C �

�(L)�:�Infinitely�many�equilibria

(HC)�:�Unique�equilibrium�

(HI)Ͳ(HI’)�:�Unique�equilibrium�
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Impact of Duopoly Competition on Operators
Benchmark: Coordinated Case

I Operators cooperate in investment and pricing to maximize total profit

Define

E�ciency Ratio =
Total Profit in Competition Case

Total Profit in Coordinated Case
Can prove Price of Anarchy = min

C

i

,C
j

E�ciency Ratio= 0.75.
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Partial Price Di↵erentiation

S. Li and J. Huang, “Price Di↵erentiation for Communication Networks,”
IEEE/ACM Transactions on Networking, 2013
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Network Model

One wireless service provider (SP)

A set of I groups of users, where each group i 2 I has
I

N

i

homogenous users
I Same utility function u

i

(s
i

) = ✓
i

ln(1 + s

i

)
I Groups have decreasing preference coe�cients: ✓

1

> ✓
2

> · · · > ✓
I

The SP’s decision for each group i

I Admit n

i

 N

i

users
I Charge a unit price p

i

(per unit of resource)
I Subject to total resource limit:

P
i

n

i

s

i

 S

Jianwei Huang (NCEL@CUHK) Tutorial 50 / 84



Two-Stage Stackelberg Game

Stage 2��(YHU\�DGPLWWHG�XVHU�GHFLGHV�V L

VL

Stage1 ��63�VHWV�SULFHV �

L L
L ,
Q V 6

D

)∑

63�PXVW�
JXDUDQWHH

^�SL��QL�`
YES

NO��VWDWLVWLFDO�LQIRUPDWLRQ�RQO\

Scheme 1��&RPSOHWH�3ULFH�'LIIHUHQWLDWLRQ
�
Scheme 2��1R�3ULFH 'LIIHUHQWLDWLRQ
�
Scheme 3��3DUWLDO�3ULFH�'LIIHUHQWLDWLRQ
�

Scheme 1��1R�3ULFH 'LIIHUHQWLDWLRQ

Scheme 2��,QFHQWLYH�&RPSDWLEOH�3ULFH�
'LIIHUHQWLDWLRQ
�

FRPSOHWH�LQIRUPDWLRQ�RI�
HDFK XVHU"

Analysis based on backward induction
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Complete Price Di↵erentiation: Stage II

Each (admitted) group i user chooses s

i

to maximize payo↵

maximize
s

i

�0

✓
i

ln(1 + s

i

)� p

i

s

i

,

The unique optimal demand is

s

⇤
i

(p
i

) = max

✓
✓
i

p

i

� 1, 0

◆
=

✓
✓
i

p

i

� 1

◆
+
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Complete Price Di↵erentiation: Stage I

SP performs admission control n and determines prices p:

maximize
n,p�0,s�0

X

i2I
n

i

p

i

s

i

subject to s

i

=

✓
✓
i

p

i

� 1

◆
+

, i 2 I,

n

i

2 {0, . . . ,N
i

} , i 2 I,
X

i2I
n

i

s

i

 S .

I The Stage II’s user responses are incorporated

This problem is challenging to solve due to non-convex objectives,
integer variables, and coupled constraint.
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Complete Price Di↵erentiation: Stage I

The admission control and pricing can be decoupled

At the unique optimal solution

I Admit all users
I Charge prices such that users perform voluntary admission control:

there exists a group threshold K

cp and �cp with

p

⇤
i

=

⇢ p
✓
i

�⇤, i  K

cp;
✓
i

, i > K

cp.

and

s

⇤
i

=

( q
✓

i

�⇤ � 1, i  K

cp;

0, i > K

cp.
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Complete Price Di↵erentiation: Optimal Solution

group 1 group 6group 5group 4group 3group 2

Zero resource Nonzero resource
Threshold (size) of effective 

market Kcp = 4

Willingness to pay decreasing

Effective market

E↵ective market: includes groups receiving positive resources
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Single Pricing (No Price Di↵erentiation)

Problem formulation similar as the complete price di↵erentiation case

Key di↵erence: change the same price p to all groups

Similar optimal solution structure

I E↵ective market is no larger than the complete price di↵erentiation case
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Partial Price Di↵erentiation

The most general case

SP can charge J prices to I groups, where J  I

I Complete price di↵erentiation: J = I

I Single pricing: J = 1

How to divide I groups into J clusters, and optimize the J prices?
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Three-Level Decomposition

Level I (Cluster Partition): partition I groups into J clusters

Level II (Inter-Cluster Resource Allocation): allocate resources among
clusters (subject to the total resource constraint)

Level III (Intra-Cluster Pricing and Resource Allocation): optimize
pricing and resource allocations within each cluster

Solving Level II and Level III together is equivalent of solving a
complete price di↵erentiation problem
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How to Perform Cluster Partition in Level I

Naive exhaustive search leads to formidable complexity for Level I

Groups I = 10 I = 100 I = 1000
Clusters J = 2 J = 3 J = 2 J = 2

Combinations 511 9330 6.33825⇥ 1029 5.35754⇥ 10300

Do we need to check all partitions?
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Property of An Optimal Partition

Will the following partition ever be optimal?

C1 (or SG1) C2 (or SG2)

group 1 group 2 group 3 group 4 group 5

Zero resource Nonzero resource

KC : Threshold for 
clusters

K1: Threshold in C1 K2: Threshold in C2

group 6

C3 (or SG3)

No.

We prove that group indices in the e↵ective market are consecutive.
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Reduced Complexity of Cluster Partition in Level I

Groups I = 10 I = 100 I = 1000
Clusters J = 2 J = 3 J = 2 J = 2

Combinations 511 9330 6.33825⇥ 1029 5.35754⇥ 10300

Reduced Combos 9 36 99 999

The search complexity reduces to polynomial in I .
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Relative Revenue Gain

10 20 30 40 50

0.02

0.04

0.06

0.08

0.10

0.12

0.14

100 200 300 400 500

0.05

0.10

0.15

0.20

G
G

S

S

Complete price differentiation!Five Prices"
Four Prices

Three Prices

Two Prices

A total of I = 5 groups

Plot the relative revenue gain of price di↵erentiation vs. total resource

Maximum gains in the small plot
I

J = 3 is the sweet spot
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Distributed Power Control

J. Huang, R. Berry and M. Honig, “Distributed Interference Compensation for
Wireless Networks,” IEEE Journal on Selected Areas in Communications, 2006
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Wireless Power Control

Distributed power control in wireless ad hoc networks

Elastic applications with no SINR targets

Want to maximize the total network performance
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Network Model

T1

T2

T3

R1

R2

R3

h1
11 h2

11

h1
12

h2
12

Single-hop transmissions.

A user = a transmitter/receiver pair.

Transmit over multiple parallel channels.

Interferences in the same channel.

Our discussions focus on the single channel case.
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Single Channel Communications

2

σM

22h
σ2

12h
11h

σ1

1p
Transmitters Receivers

21h

M
p

p

A set of N = {1, ..., n} users.
For each user n 2 N :

I Power constraint: p

n

2 [Pmin

n

,Pmax

n

].
I Received SINR (signal-to-interference plus noise ratio):

�
n

=
p

n

h

n,n

�
n

+
P

m 6=n

p

m

h

n,m
.

I Utility function U

n

(�
n

): increasing, di↵erentiable, strictly concave.
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Network Utility Maximization (NUM) Problem

NUM

max
{Pmin

n

p

n

P

max

n

,8n}

X

n

U

n

(�
n

).

Technical Challenges:
I Coupled across users due to interferences.
I Could be non-convex in power.

We want: e�cient and distributed algorithm, with limited information
exchange and fast convergence.
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Benchmark - No Information Exchange

Each user picks power to maximize its own utility, given current
interference and channel gain.

Results in p

n

= P

max

n

for all n.
I Can be far from optimal.

We propose algorithm with limited information exchange.
I Have nice interpretation as distributed Pigovian taxation.
I Analyze its behavior using supermodular game theory.
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ADP Algorithm: Asynchronous Distributed Pricing

Price Announcing: user n announces “price” (per unit interference):

⇡
n

=

����
@U

n

(�
n

)

@I

n

���� =
@U

n

(�
n

)

@�
n

�2

n

p

n

h

n,n
.

Power Updating: user n updates power p

n

to maximize surplus:

S

n

= U

n

(�
n

)� p

n

X

m 6=n

⇡
m

h

m,n.

Repeat two phases asynchronously across users.

Scalable and distributed: only need to announce single price, and
know limited channel gains (h

m,n).
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ADP Algorithm

Interpretation of prices: Pigovian taxation

ADP algorithm: distributed discovery of Pigovian taxes
I When does it converge?
I What does it converge to?
I Will it solve Problem NUM?
I How fast does it converge?
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ADP Algorithm

Interpretation of prices: Pigovian taxation

ADP algorithm: distributed discovery of Pigovian taxes
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Convergence

Depends on the utility functions.

Coe�cient of relative Risk Aversion (CRA) of U(�):

CRA(�) = ��U

00(�)

U

0(�)
.

I larger CRA ) “more concave” U.

Theorem: If each user n has a positive minimum transmission power
and CRA(�

n

) 2 [1, 2], then there is a unique optimal solution of
Problem 1-SC, and the ADP algorithm globally converges to it.

Proof: relating this algorithm to a fictitious supermodular game.
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Supermodular Games

A class of games with strategic complementaries
I Strategy sets are compact subsets of R; and each player’s pay-o↵ S

n

has increasing di↵erences:

@2

S

n

@x

n

@x

m

> 0,8n,m.

Key properties:
I A PNE exists.
I If the PNE is unique, then the asynchronous best response updates will

globally converge to it.
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Convergence Speed
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10 users, log utilities

ADP algorithm converges much faster than a gradient-based method
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Cellular Network Upgrade

L. Duan, J. Huang, and J. Walrand, “Economic Analysis of 4G Network Upgrade,”
IEEE INFOCOM, Turin, Italy, April 2013
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When To Upgrade From 3G to 4G?

Early upgrade:
I More expensive, as cost decreases over time
I Starts with few users, hence a small initial revenue

Late upgrade:
I Leads to a smaller market share
I Delays 4G revenues

Need a model that

I Capture the above tradeo↵s
I Consider the dynamics of users adopting 4G and switching providers
I Understand the upgrade timing between competing cellular providers
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Duopoly Model

Two competing operators

I Initially both using 3G technology

I Operator i decides to upgrade to 4G at time T

i

I Each operator wants to maximize its long-term profit

What will be the equilibrium of (T ⇤
1

,T ⇤
2

)?
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Users Switching

W.L.O.G., assume T

1

< T

2

Three time periods: [0,T
1

], (T
1

,T
2

], and (T
2

,1)

When t 2 [0,T
1

]: No user switching.
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Users Switching

When t 2 (T
1

,T
2

]: both inter- and intra- operator user switching

Duan, Huang, WalrandCTW  5/2012 17

3G TO 4G
When should an operator upgrade from 3G to 4G?

Customers switch providers to get 4G, at rate ↵�, ↵ < 1.
Customers of one provider upgrade to 4G at rate �.

1, 3G

1, 4G

2, 3G
2, 4G

T1 T2

�

↵�

�

Model: Customer migrations
Provider 1 Provider 2

3G 3G

4G

�

↵�

3G 3G

4G

� �

4G

Provider 1 Provider 2

When t 2 (T
2

,1): only intra-operator user switching
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Network Value (Revenue)

Network value depends on the number of subscribers

I Assume that operator i has N

i

4G users, i = 1, 2

I Total 4G network value is (N
1

+ N

2

) log(N
1

+ N

2

)

I Operator i ’s network value (revenue) is N

i

log(N
1

+ N

2

)

Later upgrade ) take advantage of existing 4G population

The revenue for 3G network is similar, with an coe�cient � 2 (0, 1)
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Revenue and Market Share

Duan, Huang, WalrandCTW  5/2012 19

3G TO 4G
When should an operator upgrade from 3G to 4G?

Model: Revenue

Ri(t) = �N i
tN + (1� �)N i⇤

t N⇤
t

N i
t := number of users of provider i

N i⇤
t := number of 4G users of provider i

N⇤
t := N1⇤

t + N2⇤
t

4G calls cost 1
Other calls cost � < 1

1, 3G

1, 4G

2, 3G
2, 4G

R1(t)

R2(t)

T1 T2

MS �
4G �

4G �MS �

4G �

Profit

⇡i =
� �

0
e��tRi(t)dt�Ke�UTi

U > � + ↵�
U = decrease rate of technology cost
� = discounting rate
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Upgrade Cost and Time Discount

One-time upgrade cost:
I

K at time t = 0
I Discounted over time: K exp(�Ut)

Revenue is also discounted over time by exp(�St)

Earlier upgrade ) larger revenue and larger cost
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Equilibrium Timings
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NE 1: T1
* ≤T2

*

NE 2: T1
* ≥T2

*

Low cost regime:
0=T1*=T2* as K↑

Medium cost regime:
0=T1*<T2*↑ as K↑

High cost regime:
0<T1*↑<T2*↑: as K↑
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Equilibrium Profits
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Medium cost regime:
π1*↑<π2*↓ as K↑ 

High cost regime:
π1*↑<π2*↑ as K↑

Low cost regime:
π1*↓=π2*↓ as K↑
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More Information: NCEL.ie.cuhk.edu.hk
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