WIRELESS NETWORK ECONOMICS AND GAMES

JIANWEI HUANG

NETWORK COMMUNICATIONS & ECONOMICS LAB THE CHINESE UNIVERSITY OF HONG KONG NCEL.IE.CUHK.EDU.HK

REFERENCES

 J. Huang and L. Gao, "Wireless Network Pricing," Synthesis Lectures on Communication Networks (Series Editor J. Walrand), Morgan & Claypool, July 2013, <u>http://jianwei.ie.cuhk.edu.hk/publication/Book/</u> <u>WirelessNetworkPricing.pdf</u>

• J. Huang, "How Do We Play Games?" an online short course, <u>https://itunes.apple.com/hk/course/how-dowe-play-games/id642100914</u>

WHY WIRELESS ECONOMICS AND GAMES?

WIRELESS UTOPIA

- Wireless spectrum is unlimited
- Wireless communication is fast and reliable
- Heterogeneous wireless technologies co-exist in harmony
- Wireless users have reasonable data needs
- Wireless providers maximize social welfare

WIRELESS REALITY

- Wireless spectrum is unlimited very limited
- Wireless communication is fast and reliable is slow and unreliable
- Heterogeneous wireless technologies co-exist in harmony compete and interfere with each other
- Wireless users have reasonable exploding data needs
- Wireless providers maximize social welfare profits

HOW ECONOMICS CAN HELP?

- Match wireless supply and demand
- Limited spectrum vs. new wireless services
 - Spectrum allocation and auction
 - Secondary spectrum markets
- Limited cellular capacity vs. growing data demands
 - Smart data pricing
 - Wi-Fi data offloading

TECH-ECON COUPLING

- Different technology characteristics
 - Cellular vs. Wi-Fi: coverage, data rate, and cost
- Distributed and heterogeneous networks
 - Different operators have different interests
 - Sophisticated devices capable of adaptation and optimization
- New technology adoption and evolution
 - Cellular technology upgrade (3G -> 4G)
 - Skype Wi-Fi adoption

TUTORIAL OUTLINE

- Theory
 - Game theory
 - Economics
- Applications
 - Technology background and problem formulation
 - Key economics and game methodologies

THEORY

THEORY OUTLINE

- Game theory:
 - Static games
 - Dynamic games
- Economics:
 - Price discrimination
 - Network Externality

GAME THEORY: STATIC GAMES

• Two suspects are arrested.

- Two suspects are arrested.
- The police lack sufficient evidence to convict the suspects, unless at least one confesses.

- Two suspects are arrested.
- The police lack sufficient evidence to convict the suspects, unless at least one confesses.
- The police hold the suspects in separate rooms, and tell each of them three possible consequences.

• If both deny: 1 month in jail each.

- If both deny: 1 month in jail each.
- If both confess: 6 months in jail each.

- If both deny: 1 month in jail each.
- If both confess: 6 months in jail each.
- If one confesses and one denies
 - The one confesses: walk away free of charge.
 - The one denies: serve 12 months in jail.

Deny

Player 1

STRICTLY DOMINANT

- Confess is a **strictly dominant strategy** for player 1,
- It always leads to the best payoff, independent of player 2's strategy.

Player 2DenyConfess

0, -12 -6, <u>-6</u>

STRICTLY DOMINANT

 Confess is also a strictly dominant strategy for player 2.

Player 2DenyConfess
(dominant)

Player 2 Confess (dominant)

Confess (dominant)

- Prediction of the game: (confess, confess)
- Dilemma:
 - (confess, confess) leads to a payoff of (-6, -6)
 - (deny, deny) leads to a payoff of (-1, -1)
- Key reason: selfish optimization.

FINDING EQUILIBRIUM

- When there are no strictly dominant strategies, we can not easily "reduce" the game.
- Similar analysis: derive the best responses.
- A stable outcome (equilibrium) will be mutual best responses.

- Two hunters decide what to hunt without communications.
- Each one can hunt a stag (deer) or a hare.
- Successful hunt of stag requires cooperation.
- Successful hunt of hare can be done individually.
- Simultaneous decisions without prior communications.

- There is no strictly dominant or strictly dominated strategies.
- We will find out a player's **best response** given the other player's choice.

Player 1

Player 1

Hare

NASH EQUILIBRIUM (NE)

- A pair of strategies = Nash Equilibrium (NE)
 - If each player is choosing the best response given the other player's strategy choice.
- At a Nash equilibrium, no player can perform a profitable deviation unilaterally.

EQUILIBRIUM SELECTION

- How to choose between two Nash equilibria?
 - (Stag, Stag) is **payoff dominant**: both players get the best payoff possible.
 - (Hare, Hare) is **risk dominant**: minimum risk if player is uncertain of each other's choice.
- Many theories, open problem.

- A couple decide where to go during Friday night without communications.
- Husband prefers to go and watch football.
- Wife prefers to go and watch ballet.
- Both prefer to stay together during the night.

Football

Husband

Ballet Football

Football

Husband

Ballet Football

Husband

BATTLE OF SEXES

Football Ballet

Football Ballet

Husband

Wife Ballet 0, 0 <u>2</u>, 4

Ballet

Husband

Ballet

CONTINUOUS GAMES

- Next we show a continuous game
- A player has continuous (infinite) choices

AEL

COURNOT COMPETITION

- Two firms competing in the same market.
- Each firm *i* chooses its production level *q_i*.
 - The cost of producing one product is *c*.
- Total products in the market is $Q = q_1 + q_2$.
- The market clearing price is *P*(*Q*)=max(*a*-*Q*,0).

• Each firm *i* wants to choose *q_i* to maximize his profit

$$\pi_i (q_i, q_j) = q_i [P(q_i + q_j) - c] = q_i [a - (q_i + q_j) - c]$$

NASH EQUILIBRIUM

• Assume the Nash equilibrium is (q_1^*, q_2^*) .

BEST RESPONSE

• For firm *i*, its best response for a given *q*_j

 $\max_{0 \le q_i < \infty} \pi_i(q_i, q_j^*) = \max_{0 \le q_i < \infty} q_i \left[a - (q_i + q_j^*) - c \right]$

• The solution

$$q_i = \frac{1}{2} \left(a - q_j^* - c \right)$$

NASH EQUILIBRIUM

• So we have

$$q_1^* = \frac{1}{2} \left(a - q_2^* - c \right)$$
$$q_2^* = \frac{1}{2} \left(a - q_1^* - c \right)$$

• This leads to the Nash equilibrium as

$$q_1^* = q_2^* = \frac{a-c}{3}.$$

GEOMETRIC SOLUTION

$$(0, a - c)$$

$$(0, (a - c)/2)$$

$$(0, (a - c)/2)$$

$$(q_{1}^{*}, q_{2}^{*}) = ((a - c)/3, (a - c)/3))$$

$$(q_{1}^{*}, q_{2}^{*}) = \frac{1}{2}(a - q_{1} - c)$$

$$((a - c)/2, 0) \quad (a - c, 0)$$

$$q_{1}$$

KEY CONCEPTS REVIEW

- Strictly dominate strategy
- Nash equilibrium
- Continuous games

THEORY OUTLINE

- Game theory:
 - Static games
 - Dynamic games
- Economics:
 - Price discrimination
 - Network Externality

GAME THEORY: DYNAMIC GAMES

- Firm 1 is considering entering a market that currently has an incumbent (firm 2).
- Firm 1 can choose "In" or "Out".
 - If "Out", firm 1 gets nothing, and firm 2 enjoys monopoly.
- If "In", firm 2 can choose "Accept" or "Fight".
 - If firm 2 accepts, then firm 1 gets a larger market share due to a newer technology.
 - If firm 2 fights, then there is a price war and both firms get negative profits.

Firm 1 _____ 0, 2

In

In

- Consider the Nash equilibrium (Out, Fight if entry occurs).
- Firm 1 chooses to stay Out because of firm 2's threat of Fight.

NON-CREDIBLE THREAT

- However, if firm 1 chooses In, then firm 2 will actually choose to Accept instead.
- Hence Fight is a non-credible threat.

EQUILIBRIUM REFINEMENT

- **Principle of sequential rationality**: an equilibrium strategy should be optimal at every point of the game tree.
- Examine each **subgame** through **backward induction**.

EQUILIBRIUM

SUBGAME PERFECT NASH EQUILIBRIUM

- A strategy profile is a **subgame perfect Nash equilibrium (SPNE)** if it is a Nash equilibrium of every subgame of the original game.
- For market entry game, the unique SPNE is (In, Accept if entry occurs).

CREDIBLE THREAT

- How to make credible threat?
- Eliminate choices.

Country A Not Attack 0, 0Attack $-\infty, -\infty$

 The unique SPNE of the Dr. Strangelove game is (Not Attack, Counter-Attack if Country A attacks).

FIRST MOVER ADVANTAGE

• Let us look at how the first mover can have an advantage.

BATTLE OF SEXES

BATTLE OF SEXES

BACKWARD INDUCTION

- Unique subgame perfect Nash equilibrium is (Football, (Football if Husband chooses Football, Ballet if Husband chooses Ballet)).
- Although the equilibrium path will be Husband picking Football and Wife picking Football, we need to specify how the Wife will pick if the Husband picks Ballet.
- SPNE is a **contingency plan** that specifies the action at every point in the game tree.

SIMULTANEOUS MOVES

• Multiple players can move in the same stage.

MARKET ENTRY II

- Firm 1 can choose to stay out or enter the market.
- After firm 1 enters the market, both firms need to make "accept" or "fight" decisions simultaneously, with four different possible outcomes.

MARKET ENTRY II

BACKWARD INDUCTION

• First consider the simultaneous interactions in the second stage (after entry occurs).

Firm 1

BACKWARD INDUCTION

- Accept is a strictly dominant strategy for Firm 1.
- Unique Nash equilibrium is (Accept, Accept).

Firm 2

Accept

Fight

 Unique subgame perfect Nash equilibrium is ((In, Accept if entry occurs), Accept if entry occurs).

KEY CONCEPTS REVIEW

- Subgame Perfect Equilibrium
- How to make credible threats
- Simultaneous moves in a single stage

THEORY OUTLINE

- Game theory:
 - Static games
 - Dynamic games
- Economics:
 - Price discrimination
 - Network Externality

ECONOMICS: PRICE DISCRIMINATION

PRICE DISCRIMINATION

- A company sells one type of product to consumers to maximize profit (revenue minus cost).
- No price discrimination: charge the same price for
 - Each consumer
 - Each unit of the product
- Price discrimination: changing one or two of the above assumptions

THREE TYPES

- First-degree: Perfect price discrimination
 - Charge each consumer the most he is willing to pay for each unit of product.
- Second-degree: Declining block pricing
 - Charge different prices for different units of products, but not differentiating consumers.
- Third-degree: Multi-market price discrimination
 - Charge different prices for different consumers, but not differentiating products.

EXAMPLE

- A single product with no cost.
- Alice is wiling to pay \$10 for the 1st unit and \$2 for the 2nd unit. Bob is willing to pay \$7 for a single unit.
- Maximum revenue w/o differentiation: \$14.

- First-degree: charge Alice \$10+\$2 for two units, and Bob \$7 for one unit. Revenue: \$19.
- Second-degree: charge \$7 for one unit, and \$12 for two units. No consumer difference. Revenue: \$19.
- Third: charge Alice \$6 per unit, and Bob \$7 per unit. No quantity discount. Revenue: \$19.

HOW TO DISCRIMINATE

- Identify consumer types
 - Age
 - Time
 - ...
- Prevent resale
 - Using photo ID for airline tickets
 - ...

BY AGE

BY TIME

- Kindle 1
 - 11/07, \$399
- Kindle 2
 - 2/09, \$399; 7/09, \$299
 - 10/09, \$259; 6/10, \$189
- Kindle 3,
 - 8/10, \$139
 - 9/11, \$79

EVEN MORE DYNAMIC

MORE INNOVATIVE ONES

• Orbitz shows more expensive hotel options to Mac users than windows users (source: WSJ 08/12)

ECONOMICS: NETWORK EXTERNALITY

NETWORK EXTERNALITY

- Any side effect imposed by the action of a player on a third party not directly involved.
- Can be either negative (cost) or positive (benefits).

- Negative externality distorts the market and reduces social welfare
- How to correct: Pigovian tax (one approach)
 - Impose additional tax on entities generating the negative externalities
 - Examples: pollution tax, cigarette taxes (\$1.01 per pack of US federal tax in 2009), congestion pricing (Electronic Road Pricing in Singapore)

POSITIVE EXTERNALITY

POSITIVE EXTERNALITY

NETWORK EFFECT

NETWORK EFFECT

- Metcalfe's law'80
 - A network with n nodes has up to n(n-1)/2 unique connections
 - Hence the network value is roughly O(n^2)
- Briscoe-Odlyzko-Tilly'06 refinement
 - Not all connections are equally important
 - The importance of connections decreases as 1, 1/2, 1/3, ..., 1/(n-1), with the sum ~ log(n)
 - A network value grows O(n*log(n))

THEORY OUTLINE

- Game theory:
 - Static games
 - Dynamic games
- Economics:
 - Price discrimination
 - Network Externality

Applications

- Graphical congestion games (static game)
- Spectrum sensing-leasing tradeoff (dynamic games)
- Spectrum leasing competition (oligopoly competition)
- Partial price differentiation (price differentiation)
- Distributed power control (negative network externality)
- Cellular network upgrade (positive network externality)

Our Focus

- Key motivation
- Key modeling
- Key methodology
- More results can be found in the papers

Graphical Congestion Games

- R. Southwell, X. Chen, and J. Huang, "Quality of Service Games for Spectrum Sharing," *IEEE Journal on Selected Areas of Communications*, 2014
- X. Chen and J. Huang, "Distributed Spectrum Access with Spatial Reuse," *IEEE Journal on Selected Areas in Communications*, 2013
 - C. Tekin, M. Liu, R. Southwell, J. Huang, and S. Ahmad, "Atomic Congestion Games on Graphs and Their Applications in Networking," *IEEE/ACM Transactions on Networking*, 2012

Congestion Game

• Each user chooses which resource to use considering congestion

Graphical Congestion Game

- Graph characterizes users' relationship
 - Nodes: users
 - Edges: potential congestion relationship
 - Colors: resource choices
- Users 2 and 4 will never generate congestion to each other

Channel Selection and Interference Management

- Users: mobile devices
- Resources: channels
- Congestion: interferences

• Players (users): $N = \{1, 2, 3, 4\}$

- Players (users): $N = \{1, 2, 3, 4\}$
- Resources: $\mathcal{R} = \{White, Black\}$

• Players (users):
$$\mathcal{N} = \{1, 2, 3, 4\}$$

• Resources: $\mathcal{R} = \{White, Black\}$
• Graph: $S = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

• Players (users): $\mathcal{N} = \{1, 2, 3, 4\}$ • Resources: $\mathcal{R} = \{White, Black\}$ • Graph: $S = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ • State: $\mathbf{X} = (X_n, n \in \mathcal{N}) = (White, White, Black, White)$

- Players (users): $\mathcal{N} = \{1, 2, 3, 4\}$
- Resources: $\mathcal{R} = \{White, Black\}$
- Graph: $S = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

• State: $\mathbf{X} = (X_n, n \in \mathcal{N}) = (White, White, Black, White)$ • Payoff: $f_n^r(\mathbf{X}) = f_n^r(\sum_{X_m = r} S_{m,n}), \ \forall r \in \mathcal{R}, \forall n \in \mathcal{N},$

- Players (users): $\mathcal{N} = \{1, 2, 3, 4\}$
- Resources: $\mathcal{R} = \{White, Black\}$

• Graph:
$$S = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

• State: $\mathbf{X} = (X_n, n \in \mathcal{N}) = (White, White, Black, White)$

- Payoff: $f_n^r(\mathbf{X}) = f_n^r(\sum_{X_m=r} S_{m,n}), \ \forall r \in \mathcal{R}, \forall n \in \mathcal{N},$
- In general, the graph can be weighted and directed

Key Question 1

• Does GCG have a unique Pure Nash equilibrium (PNE)?

• No PNE: at least one player can improve its payoff by switching.

- No PNE: at least one player can improve its payoff by switching.
- Player 1 switches, but player 3 becomes unsatisfied.

- No PNE: at least one player can improve its payoff by switching.
- Player 1 switches, but player 3 becomes unsatisfied.
- Player 3 switches, but player 2 becomes unsatisfied.

- No PNE: at least one player can improve its payoff by switching.
- Player 1 switches, but player 3 becomes unsatisfied.
- Player 3 switches, but player 2 becomes unsatisfied.
- Player 2 switches, but player 1 becomes unsatisfied.

PNE May Not Be Unique

• This is not a PNE: player 1 can improve by switching to Black.

PNE May Not Be Unique

This is not a PNE: player 1 can improve by switching to Black.This is a PNE.

PNE May Not Be Unique

- This is not a PNE: player 1 can improve by switching to Black.
- This is a PNE.
- This is another PNE.

• Proof idea:

- Proof idea:
 - Consider a GCG with a PNE.

• Proof idea:

- Consider a GCG with a PNE.
- Add a new player with a single connection with the original GCG.

• Proof idea:

- Consider a GCG with a PNE.
- Add a new player with a single connection with the original GCG.
- Show that the new GCG also has a PNE.

Existence of PNE: Directed Weighted Tree

• Directed weighted tree: the corresponding undirected graph is a tree.

Key Question 2

• How to achieve a PNE?

Asynchronous Better Response

• Asynchronous better response updates: players improve, one at a time

Asynchronous Better Response

- Asynchronous better response updates: players improve, one at a time
- Step 1: Player 1 switches to Black

Asynchronous Better Response

- Asynchronous better response updates: players improve, one at a time
- Step 1: Player 1 switches to Black
- Step 2: Player 4 switches to Black, and reaches a PNE

Finite Improvement Property (FIP)

Definition (FIP)

A GCG has the Finite Improvement Property (FIP) if every sufficiently long sequence of better response updates leads to a PNE.

Existence of FIP: Directed Acyclic Graph

- Directed acyclic graph: graph does not contain cycles.
- Existence of PNE:
 - Create a topological sort: 3, 2, 4, 1
 - Construct a PNE by letting players sequentially update their strategies
- Can further prove the existence of FIP.

Case Study: Spatial QoS Satisfaction Games

- Spatial QoS satisfaction game always has the FIP.
- With homogenous users: any PNE is socially optimal.
- With homogeneous channels: design an algorithm to generate a socially optimal PNE.

Modeling Wireless Channel Selections

- Protocol interference model
- Undirected unweighted graph: symmetric interference relationship

Modeling Wireless Channel Selections

- Protocol interference model
- Undirected unweighted graph: symmetric interference relationship
- Directed unweighted graph: users have different transmission/interference ranges

Modeling Wireless Channel Selections

- Physical interference model
- Data rate increasing in signal-to-interference-plus-noise ratio (SINR)

$$\mathtt{SINR} = \frac{h_{n,n}P_n}{\tau_0 B_i + \sum_{m:m \neq n, X_m = r} h_{m,n} P_m}$$

- Interference is weighted and asymmetric: $\sum_{m:m \neq n, X_m = r} h_{m,n} P_m$
- Need to consider directed and weighted graph

Simulation Setup

- Users are uniformly distributed in an area with size $L \times L m^2$.
- Fixed user transmission power $P_n = 100$ mW.
- Channel bandwidth of $B_r = 20$ MHz.
- User payoff equals data rate log(1 + SINR).
- Distance-based channel gain $h_{m,n} = 1/d_{m,n}^4$.

Properties of Graphs

- The underlying graph is weighed, directed, with loops.
 - A PNE may not exist.

Properties of Graphs

- The underlying graph is weighed, directed, with loops.
 - A PNE may not exist.
- As network size *L* increases, interferences become approximately symmetric
 - Users can be approximated as dots in the network
 - The graph becomes undirected and weighted
 - Theory implies that GCG has FIP, and thus a PNE exists.

Percentage of Convergence

Length L of square region (in meters)

• Count convergence faster than 500 slots.

Generalization of Payoff Functions

- Modeling more general (wireless) resource sharing mechanisms
- Example: payers share channels based on *p*-persistent random access with player-specific contending probability

$$U_n(\mathbf{X}) = \theta_{X_n} B_{X_n}^n g_n(\mathcal{N}_n^{X_n}(\mathbf{X})) = \theta_{X_n} B_{X_n}^n p_n \prod_{i \in \mathcal{N}_n^{X_n}(\mathbf{X})} (1 - p_i)$$

• Construct special potential function to prove FIP.

Spectrum Sensing-Leasing Tradeoff

L. Duan, J. Huang, and B. Shou, "Investment and Pricing with Spectrum Uncertainty: A Cognitive Operators Perspective," IEEE Transactions on Mobile Computing, 2011

Spectrum Is Scarce

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

Spectrum Is Under-Utilized

©Share Spectrum Co. Ltd.

Cognitive Virtual Network Operators

- Virtual: does not own radio spectrum (or even physical infrastructure)
- Flexible spectrum acquisition

Investment Choices	Dynamic Leasing	Spectrum Sensing
Cost	High	Low
Reliability	High	Low

• Pricing & spectrum allocation among local users to maximize profit

Network Model

Two Spectrum Investment Choices

Both on a short time scale

Four-Stage Stackelberg Game

Backward Induction & Subgame Perfect Equilibrium

Stage IV: Users' Bandwidth Demands

- Physical layer model: users share the spectrum using OFDM
 - No interferences
 - Users request bandwidth from the operator
- User k's wireless characteristics:

$$g_k = \frac{P_k^{\max} h_k}{n_0}$$

- P_k^{max} : maximum transmission power
- *h_k*: channel condition
- n₀: background noise density
- User k's data rate

$$r_k(\mathbf{w}_k) = \mathbf{w}_k \ln(1 + \mathrm{SNR}_k) = \mathbf{w}_k \ln\left(1 + \frac{g_k}{w_k}\right)$$

Users' Payoff Functions

• Assume that all users operate in the high SNR regime

$$r_k(w_k) \approx w_k \ln\left(\frac{g_k}{w_k}\right)$$

• User k's payoff

$$u_k(\pi, \mathbf{w}_k) = \mathbf{w}_k \ln\left(\frac{g_k}{w_k}\right) - \pi w_k$$

Users' Optimization Problems

User *i*'s Bandwidth Optimization Problem

$$w_k^*(\pi) = rg\max_{egin{smallmatrix} w_k \geq 0 \ w_k \geq 0 \ w_k \geq 0 \ w_k \geq 0 \ w_k = 0 \ w_k \in 0 \ w_k \geq 0 \ w_k \in 0$$

Users' Optimization Problems

User *i*'s Bandwidth Optimization Problem

$$w_k^*(\pi) = rg\max_{egin{smallmatrix} w_k \geq 0 \ w_k \geq 0 \ w_k \geq 0 \ w_k \geq 0 \ w_k = 0 \ w_k \in 0$$

- $SNR_k^* = g_k/w_k^* = e^{1+\pi}$: same (fair) for all users
- Payoff $u_k(\pi, w_k^*) = g_k e^{-(1+\pi)}$: linear in g_k

Stages III, II and I

• Stage III: operator optimizes over price π :

$$R_{III}(B_I, B_s, \alpha) = \max_{\pi \ge 0} \min\left(\pi \sum_k w_k^*(\pi), \pi (B_I + B_s \alpha)\right) - (B_s C_s + B_I C_I)$$

Stages III, II and I

• Stage III: operator optimizes over price π :

$$R_{III}(B_I, B_s, \alpha) = \max_{\pi \ge 0} \min\left(\pi \sum_k w_k^*(\pi), \pi (B_I + B_s \alpha)\right) - (B_s C_s + B_I C_I)$$

• Stage II: operator optimizes over leasing bandwidth B_I:

$$R_{II}(B_s,\alpha) = \max_{\substack{B_l \geq 0}} R_{III}(B_l, B_s, \alpha).$$

Stages III, II and I

• Stage III: operator optimizes over price π :

$$R_{III}(B_I, B_s, \alpha) = \max_{\pi \ge 0} \min\left(\pi \sum_k w_k^*(\pi), \pi (B_I + B_s \alpha)\right) - (B_s C_s + B_I C_I)$$

• Stage II: operator optimizes over leasing bandwidth B_I:

$$R_{II}(B_s,\alpha) = \max_{\substack{B_l \geq 0}} R_{III}(B_l, B_s, \alpha).$$

• Stage I: operator optimizes over sensing bandwidth B_s:

$$\max_{\boldsymbol{B}_{\boldsymbol{s}} \geq 0} E_{\alpha \in [0,1]} \left[R_{II} (\boldsymbol{B}_{\boldsymbol{s}}, \alpha) \right].$$

- Assumption: sensing uncertainty α follows uniform distribution.
- Will be relaxed later.

Equilibrium Summary

• Unique equilibrium.

Sensing Cost	$C_s \geq \frac{C_l}{2}$	$\frac{1-e^{-2C_l}}{4} \le C_s \le \frac{C_l}{2}$	
Sensing B_s^*	0	$B_s^{L*} \in \left[Ge^{-(2+C_l)}, Ge^{-2} ight]$	
Sensing Factor α	$0 \le lpha \le 1$	$0 \le \alpha \le Ge^{-(2+C_l)}/B_s^{L*}$	$\alpha > Ge^{-(2+C_l)}/B_s^{L*}$
Leasing B_I^*	$Ge^{-(2+C_l)}$	$Ge^{-(2+C_l)}-B_s^{L*}\alpha$	0
Price π^*	$1 + C_{I}$	$1 + C_{l}$	$\ln\left(rac{G}{B^{L*}_slpha} ight)-1$
User <i>k</i> 's SNR	$e^{(2+C_l)}$	$e^{(2+C_l)}$	$\frac{G}{B_s^{L*}\alpha}$
User <i>k</i> 's Payoff	$g_k e^{-(2+C_l)}$	$g_k e^{-(2+C_l)}$	$g_k(B_s^{\hat{L}*}lpha/G)$

Impact of Sensing Uncertainty on Operator

- Realized profit increases with α
 - Can be smaller than no sensing
- Smaller C_s leads to more aggressive sensing and less reliable supply

Impact of Sensing Uncertainty on Users

• Users' payoffs never decrease under sensing

Spectrum Leasing Competition

L. Duan, J. Huang, and B. Shou, "Competition with Dynamic Spectrum Leasing," *IEEE Transactions on Mobile Computing*, 2013

Network Model

Three-Stage Multi-leader-follower Game

Stage III: Users' Bandwidth Demands

• User k's payoff of choosing operator i = 1, 2

$$u_k(\pi_i, \mathbf{w}_{ki}) = \mathbf{w}_{ki} \ln \left(\frac{P_i^{\max} h_i}{n_0 \mathbf{w}_{ki}} \right) - \pi_i \mathbf{w}_{ki}$$

- Optimal demand: $w_{ki}^*(\pi_i) = \arg \max_{\mathbf{w}_{ki} \ge 0} u_k(\pi_i, \mathbf{w}_{ki}) = g_k e^{-(1+\pi_i)}$
- Optimal payoff: $u_k(\pi_i, w_{ki}^*(\pi_i))$
- User k prefers the "better" operator: $i^* = \arg \max_{i=1,2} u_k(\pi_i, w_{ki}^*(\pi_i))$
- Users demands may not be satisfied due to limited spectrum

Stages II: Pricing Game

- Players: two operators
- Strategies: $\pi_i \ge 0, i = 1, 2$
- Payoffs: profit R_i for operator i = 1, 2:

$$R_i(B_i, B_j, \pi_i, \pi_j) = \pi_i Q_i(B_i, B_j, \pi_i, \pi_j) - B_i C_i$$

Stage II: Pricing Equilibrium

- Symmetric equilibrium: $\pi_1^* = \pi_2^*$.
- Threshold structure:
 - Unique positive equilibrium exists $B_1 + B_2 \leq Ge^{-2}$.

Stage I: Leasing Game

- Players: two operators
- Strategies: $B_i \in [0, \infty), i = 1, 2$, and $B_1 + B_2 \le Ge^{-2}$.
- Payoffs: profit R_i for operator i = 1, 2:

$$R_i(\mathbf{B}_i, B_j) = \mathbf{B}_i \left(\ln \left(\frac{G}{\mathbf{B}_i + B_j} \right) - 1 - C_i \right)$$

Stage I: Leasing Equilibrium

- Linear in wireless characteristics $G = \sum_{i} g_{i}$;
- Threshold structure:
 - Low costs: infinitely many equilibria
 - High comparable costs: unique equilibrium
 - High incomparable costs: unique monopoly equilibrium

Impact of Duopoly Competition on Operators

• Benchmark: Coordinated Case

Operators cooperate in investment and pricing to maximize total profit

Define

 $Efficiency Ratio = \frac{Total Profit in Competition Case}{Total Profit in Coordinated Case}$

• Can prove Price of Anarchy = \min_{C_i, C_i} Efficiency Ratio = 0.75.

Partial Price Differentiation

S. Li and J. Huang, "Price Differentiation for Communication Networks," IEEE/ACM Transactions on Networking, 2013

Network Model

- One wireless service provider (SP)
- A set of $\mathcal I$ groups of users, where each group $i \in \mathcal I$ has
 - *N_i* homogenous users
 - Same utility function $u_i(s_i) = \theta_i \ln(1 + s_i)$
 - Groups have decreasing preference coefficients: $\theta_1 > \theta_2 > \cdots > \theta_I$
- The SP's decision for each group i
 - Admit $n_i \leq N_i$ users
 - Charge a unit price p_i (per unit of resource)
 - Subject to total resource limit: $\sum_{i} n_i s_i \leq S$

Two-Stage Stackelberg Game

• Analysis based on backward induction

Complete Price Differentiation: Stage II

• Each (admitted) group *i* user chooses *s_i* to maximize payoff

$$\underset{s_i \geq 0}{\text{maximize } \theta_i \ln(1+s_i) - p_i s_i},$$

• The unique optimal demand is

$$s_i^*(p_i) = \max\left(rac{ heta_i}{p_i} - 1, 0
ight) = \left(rac{ heta_i}{p_i} - 1
ight)^+$$

Complete Price Differentiation: Stage I

• SP performs admission control **n** and determines prices **p**:

$$\begin{array}{ll} \underset{\mathbf{n},\mathbf{p}\geq 0,\mathbf{s}\geq 0}{\text{maximize}} & \sum_{i\in\mathcal{I}} n_i p_i s_i \\ \text{subject to} & \mathbf{s}_i = \left(\frac{\theta_i}{p_i} - 1\right)^+, \ i\in\mathcal{I}, \\ & n_i\in\{0,\ldots,N_i\} \ , \ i\in\mathcal{I}, \\ & \sum_{i\in\mathcal{I}} n_i s_i \leq S. \end{array}$$

The Stage II's user responses are incorporated

Complete Price Differentiation: Stage I

• SP performs admission control **n** and determines prices **p**:

$$\begin{array}{ll} \underset{\mathbf{n},\mathbf{p}\geq 0,\mathbf{s}\geq 0}{\text{maximize}} & \sum_{i\in\mathcal{I}}n_ip_is_i\\ \text{subject to} & \mathbf{s}_i = \left(\frac{\theta_i}{p_i} - 1\right)^+, \ i\in\mathcal{I},\\ & n_i\in\{0,\ldots,N_i\} \ , \ i\in\mathcal{I},\\ & \sum_{i\in\mathcal{I}}n_is_i\leq S. \end{array}$$

- The Stage II's user responses are incorporated
- This problem is challenging to solve due to non-convex objectives, integer variables, and coupled constraint.

Complete Price Differentiation: Stage I

- The admission control and pricing can be decoupled
- At the unique optimal solution
 - Admit all users
 - Charge prices such that users perform voluntary admission control: there exists a group threshold K^{cp} and λ^{cp} with

$$p_i^* = \begin{cases} \sqrt{\theta_i \lambda^*}, & i \le K^{cp}; \\ \theta_i, & i > K^{cp}. \end{cases}$$

and

$$s_i^* = \left\{ egin{array}{c} \sqrt{rac{ heta_i}{\lambda^*}} - 1, & i \leq K^{cp}; \ 0, & i > K^{cp}. \end{array}
ight.$$

Complete Price Differentiation: Optimal Solution

• Effective market: includes groups receiving positive resources

Single Pricing (No Price Differentiation)

- Problem formulation similar as the complete price differentiation case
- Key difference: change the same price p to all groups
- Similar optimal solution structure
 - Effective market is no larger than the complete price differentiation case

Partial Price Differentiation

- The most general case
- SP can charge J prices to I groups, where $J \leq I$
 - Complete price differentiation: J = I
 - Single pricing: J = 1
- How to divide I groups into J clusters, and optimize the J prices?
Three-Level Decomposition

- Level I (Cluster Partition): partition I groups into J clusters
- Level II (Inter-Cluster Resource Allocation): allocate resources among clusters (subject to the total resource constraint)
- Level III (Intra-Cluster Pricing and Resource Allocation): optimize pricing and resource allocations within each cluster

Three-Level Decomposition

- Level I (Cluster Partition): partition I groups into J clusters
- Level II (Inter-Cluster Resource Allocation): allocate resources among clusters (subject to the total resource constraint)
- Level III (Intra-Cluster Pricing and Resource Allocation): optimize pricing and resource allocations within each cluster
- Solving Level II and Level III together is equivalent of solving a complete price differentiation problem

How to Perform Cluster Partition in Level I

• Naive exhaustive search leads to formidable complexity for Level I

Groups	<i>I</i> = 10		l = 100	l = 1000
Clusters	J=2	J=3	<i>J</i> = 2	<i>J</i> = 2
Combinations	511	9330	$6.33825 imes 10^{29}$	$5.35754 imes 10^{300}$

How to Perform Cluster Partition in Level I

• Naive exhaustive search leads to formidable complexity for Level I

Groups	<i>I</i> = 10		l = 100	l = 1000
Clusters	J=2	J = 3	<i>J</i> = 2	<i>J</i> = 2
Combinations	511	9330	$6.33825 imes 10^{29}$	$5.35754 imes 10^{300}$

• Do we need to check all partitions?

Property of An Optimal Partition

• Will the following partition ever be optimal?

Property of An Optimal Partition

• Will the following partition ever be optimal?

• No.

Property of An Optimal Partition

• Will the following partition ever be optimal?

- No.
- We prove that group indices in the effective market are consecutive.

Reduced Complexity of Cluster Partition in Level I

Groups	/ = 10		<i>l</i> = 100	l = 1000
Clusters	J = 2	J = 3	J = 2	J = 2
Combinations	511	9330	$6.33825 imes 10^{29}$	$5.35754 imes 10^{300}$
Reduced Combos	9	36	99	999

• The search complexity reduces to polynomial in *I*.

Relative Revenue Gain

- A total of I = 5 groups
- Plot the relative revenue gain of price differentiation vs. total resource
- Maximum gains in the small plot
 - J = 3 is the sweet spot

Distributed Power Control

J. Huang, R. Berry and M. Honig, "Distributed Interference Compensation for Wireless Networks," IEEE Journal on Selected Areas in Communications, 2006

Wireless Power Control

- Distributed power control in wireless ad hoc networks
- Elastic applications with no SINR targets
- Want to maximize the total network performance

Network Model

- Single-hop transmissions.
- A user = a transmitter/receiver pair.
- Transmit over multiple parallel channels.
- Interferences in the same channel.
- Our discussions focus on the single channel case.

Single Channel Communications

- A set of $\mathcal{N} = \{1, ..., n\}$ users.
- For each user $n \in \mathcal{N}$:
 - Power constraint: $p_n \in [P_n^{min}, P_n^{max}]$.
 - Received SINR (signal-to-interference plus noise ratio):

$$\gamma_n = \frac{p_n h_{n,n}}{\sigma_n + \sum_{m \neq n} p_m h_{n,m}}$$

• Utility function $U_n(\gamma_n)$: increasing, differentiable, strictly concave.

Network Utility Maximization (NUM) Problem

- Technical Challenges:
 - Coupled across users due to interferences.
 - Could be non-convex in power.
- We want: efficient and distributed algorithm, with limited information exchange and fast convergence.

Benchmark - No Information Exchange

- Each user picks power to maximize its own utility, given current interference and channel gain.
- Results in $p_n = P_n^{max}$ for all n.
 - Can be far from optimal.

Benchmark - No Information Exchange

- Each user picks power to maximize its own utility, given current interference and channel gain.
- Results in $p_n = P_n^{max}$ for all n.
 - Can be far from optimal.
- We propose algorithm with limited information exchange.
 - ► Have nice interpretation as distributed Pigovian taxation.
 - Analyze its behavior using supermodular game theory.

ADP Algorithm: Asynchronous Distributed Pricing

• Price Announcing: user *n* announces "price" (per unit interference):

$$\pi_n = \left| \frac{\partial U_n(\gamma_n)}{\partial I_n} \right| = \frac{\partial U_n(\gamma_n)}{\partial \gamma_n} \frac{\gamma_n^2}{p_n h_{n,n}}$$

• Power Updating: user *n* updates power *p_n* to maximize surplus:

$$S_n = U_n(\gamma_n) - p_n \sum_{m \neq n} \pi_m h_{m,n}.$$

- Repeat two phases asynchronously across users.
- Scalable and distributed: only need to announce single price, and know limited channel gains $(h_{m,n})$.

ADP Algorithm

• Interpretation of prices: Pigovian taxation

ADP Algorithm

- Interpretation of prices: Pigovian taxation
- ADP algorithm: distributed discovery of Pigovian taxes
 - When does it converge?
 - What does it converge to?
 - Will it solve Problem NUM?
 - How fast does it converge?

Convergence

• Depends on the utility functions.

Convergence

- Depends on the utility functions.
- Coefficient of relative Risk Aversion (CRA) of $U(\gamma)$:

$$CRA(\gamma) = -rac{\gamma U''(\gamma)}{U'(\gamma)}.$$

▶ larger CRA
$$\Rightarrow$$
 "more concave" *U*.

Convergence

- Depends on the utility functions.
- Coefficient of relative Risk Aversion (CRA) of $U(\gamma)$:

$$\mathit{CRA}(\gamma) = -rac{\gamma \, \mathit{U}''(\gamma)}{\mathit{U}'(\gamma)}.$$

► larger CRA \Rightarrow "more concave" U.

- Theorem: If each user n has a positive minimum transmission power and CRA(γ_n) ∈ [1,2], then there is a unique optimal solution of Problem 1-SC, and the ADP algorithm globally converges to it.
- Proof: relating this algorithm to a fictitious supermodular game.

Supermodular Games

• A class of games with strategic complementaries

Strategy sets are compact subsets of ℝ; and each player's pay-off S_n has increasing differences:

$$\frac{\partial^2 S_n}{\partial x_n \partial x_m} > 0, \forall n, m.$$

- Key properties:
 - A PNE exists.
 - If the PNE is unique, then the asynchronous best response updates will globally converge to it.

Convergence Speed

- 10 users, log utilities
- ADP algorithm converges much faster than a gradient-based method

Tutorial

Cellular Network Upgrade

L. Duan, J. Huang, and J. Walrand, "Economic Analysis of 4G Network Upgrade," IEEE INFOCOM, Turin, Italy, April 2013

When To Upgrade From 3G to 4G?

- Early upgrade:
 - More expensive, as cost decreases over time
 - Starts with few users, hence a small initial revenue
- Late upgrade:
 - Leads to a smaller market share
 - Delays 4G revenues
- Need a model that
 - Capture the above tradeoffs
 - Consider the dynamics of users adopting 4G and switching providers
 - Understand the upgrade timing between competing cellular providers

Duopoly Model

- Two competing operators
 - Initially both using 3G technology
 - Operator i decides to upgrade to 4G at time T_i
 - Each operator wants to maximize its long-term profit
- What will be the equilibrium of (T_1^*, T_2^*) ?

- W.L.O.G., assume $T_1 < T_2$
- Three time periods: [0, T_1], (T_1 , T_2], and (T_2 , ∞)

- W.L.O.G., assume $T_1 < T_2$
- Three time periods: $[0, T_1]$, $(T_1, T_2]$, and (T_2, ∞)
- When $t \in [0, T_1]$: No user switching.

• When $t \in (T_1, T_2]$: both inter- and intra- operator user switching Provider 1

Customers of one provider upgrade to 4G at ra Customers switch providers to get 4G, at rate α .

• When $t \in (T_1, T_2]$: both inter- and intra- operator user switching Provider 1

Network Value (Revenue)

• Network value depends on the number of subscribers

- Assume that operator *i* has N_i 4G users, i = 1, 2
- Total 4G network value is $(N_1 + N_2) \log(N_1 + N_2)$
- Operator *i*'s network value (revenue) is $N_i \log(N_1 + N_2)$

Network Value (Revenue)

Network value depends on the number of subscribers

- Assume that operator *i* has N_i 4G users, i = 1, 2
- Total 4G network value is $(N_1 + N_2) \log(N_1 + N_2)$
- Operator *i*'s network value (revenue) is $N_i \log(N_1 + N_2)$
- Later upgrade \Rightarrow take advantage of existing 4G population

Network Value (Revenue)

• Network value depends on the number of subscribers

- Assume that operator *i* has N_i 4G users, i = 1, 2
- Total 4G network value is $(N_1 + N_2) \log(N_1 + N_2)$
- Operator *i*'s network value (revenue) is $N_i \log(N_1 + N_2)$
- Later upgrade \Rightarrow take advantage of existing 4G population
- The revenue for 3G network is similar, with an coefficient $\gamma \in (0,1)$

Revenue and Market Share

Jianwei Huang (NCEL@CUHK) Tutorial

Upgrade Cost and Time Discount

- One-time upgrade cost:
 - K at time t = 0
 - Discounted over time: $K \exp(-Ut)$
- Revenue is also discounted over time by exp(-St)
- Earlier upgrade \Rightarrow larger revenue and larger cost
Equilibrium Timings

Equilibrium Profits

More Information: NCEL.ie.cuhk.edu.hk

